使用最佳 Java 库将您的机器学习项目提升到新的水平。我们的首选包括 Weka 和 Deeplearning4j,它们可以帮助您构建强大的模型。
机器学习是人工智能 (AI) 的一个子集,是指机器或程序模仿人类行为并执行复杂任务的能力,这些任务模仿我们解决问题的能力。Java 是机器学习的顶级编程语言之一。
在这里,我们将介绍可用的最佳Java库来帮助您构建机器学习解决方案。
机器学习的一个重要方面是四种基本方法,即:
- 监督学习
- 无监督学习
- 半监督学习
- 强化学习
除了选择正确的方法之外,您还需要了解要预测的数据类型。然后,您可以选择要使用的算法类型。
换句话说,机器学习有很多“活动部件”,所有这些都取决于选择正确的工具。
幸运的是,由于 Java 是 ML 广泛接受的语言,因此有大量Java 框架可以帮助使这项任务变得更加容易。
但是什么是库呢?简单地说,库是一组预先编写的代码,开发人员可以使用和重复使用它们,使开发过程更加高效和可靠。几乎每种编程语言都有库,其中大多数都是开源的,可以免费使用。如果您希望您的团队尽可能高效地工作,那么库就是您的最佳选择。这样,您的开发人员就不必每次开始新项目时都重新发明轮子。
有许多适用于 ML 的 Java 库。由于它是一种非常著名的编程语言,因此您可以轻松找到一家Java 开发公司来帮助您构建机器学习项目。
为什么选择正确的 Java 机器学习库很重要
库使应用程序开发变得更加高效和可靠。Java开发人员无需为每个功能或特性编写新代码,而是可以利用已经过审查和测试的各种预先编写的库。引入错误的可能性也较低。
使用库可以节省时间和金钱——开发人员不必解决他们面临的每个问题。
选择图书馆时要考虑的事项
每个项目、开发人员和公司都有不同的需求。以下是一些需要考虑的因素:
- ML 类型:您的团队是否会使用深度学习或经典机器学习算法的库或框架?
- 语言类型:这里我们查看的是 Java 库。但是,项目可能还需要其他编程语言。因此,您可以选择可以与其他语言和/或库一起使用的库。
- 扩展:您会在内部数据中心使用该程序还是为云开发?项目需要扩展到什么程度?
- 数据类型:您还需要知道要使用的数据类型。您的数据库是 SQL 还是 NoSQL?结构化数据还是非结构化数据?
- 神经网络:您是否需要一个包含神经网络创建工具的库?
- API:您是否需要包含 API 或可以与其他 API 交互的库?
- 开源:您是否需要使用以开源许可证发布的库?
- GPU:如果性能是首要考虑因素,则需要选择一个可以与 GPU 配合使用的库。
考虑到以上内容,有哪些最好的库可用?让我们来看看。
7 个顶级 Java ML 库
由于 Java 非常流行并且与 ML 配合良好,因此您可能已经猜到了,有很多库可用。但不要认为您只能使用一个库。您可能有一个更大的项目需要多个库。
1. Weka
如果您正在寻找一个旨在简化数据挖掘等任务的库,Weka是一个不错的选择。Weka 代表 Waikato 知识分析环境,包含用于不同任务的工具,例如数据分类、渗透、回归、关联规则挖掘和聚类。
Weka 有助于无缝且可持续地存储、处理和管理数据,并且可以在任何地方使用。您可以将停滞的数据孤岛转变为流数据管道,同时兼具云原生的简单性和内部数据中心集群的性能。如果云端的高性能是您的首要任务,那么 Weka 是一个不错的选择。
Weka 可通过 Java API、标准终端应用程序甚至 GUI 使用。Weka 的用例包括:
- 云数据存储
- HPC 数据管理
- 机器学习和人工智能的数据平台
- 加速容器化工作负载
Weka 是开源的,可以免费使用。
主要特点 // 产品亮点
- Weka 可以预处理数据。
- Weka 可以为数据项分配类别或范畴。
- Weka 可以轻松实现集群。
- Weka 包含对数据关联的支持。
- Weka 包含许多选择属性。
- Weka 可以将数据可视化。
2. DeepLearning4j
DeepLearning4j由 Eclipse 创建,包含一组面向机器学习的 Java 工具。DeepLearning4j 的一大亮点是,它是少数几个允许您在与 Python(机器学习模型最流行的编程语言之一)交互的同时训练 Java 模型的框架之一。
DeepLearnign4j 中的模块包括以下内容:
- Nd4j – TensorFlow、PyTorch 和 NumPy 操作的组合
- Samediff – 用于复杂图形执行的低级框架
- Python4j – 允许将 Python 脚本部署到生产环境的框架
- Libnd4j – 运行数学代码的 C++ 库
- Datavec – 用于数据转换的库,将数据转换为张量,然后可用于运行神经网络
- Apache Spark 集成 – 可以在 Apache Spark 上运行深度学习管道
DeepLearning4j 的用例包括导入和重新训练模型以及在 JVM 微服务环境、移动设备、物联网和 Apache Spark 中部署。该库是集成用 Python 构建的模型的最佳工具之一。
主要特点 // 产品亮点
- 对于 Python AI/ML 很重要
- Java、Scala 和 Python API。
- 通过迭代减少进行并行训练
- 可通过 Hadoop 进行扩展
- 分布式 CPU 和 GPU 支持
优点 | 缺点 |
可以处理海量数据 | 与 Python 集成 |
处理非结构化数据 | 与 CUDA 集成以实现 GPU 访问 |
非常适合推荐系统、图像识别和网络入侵检测 |
3. Apache Mahout
Apache Mahout是一个用于开发机器学习算法的开源项目,适用于 Java 和 Scala。该库主要关注常见的数学运算(特别是线性代数)和原始 Java 集合。Apache Mahout 旨在快速实现机器学习算法。
Apache Mahout 与 Apache Hadoop 协同工作,因此您的团队可以将 ML 应用于分布式计算。Apache Mahout 包含的核心算法以数据聚类、挖掘和分类为中心。
主要特点 // 产品亮点
- 后端无关: Apache Mahout 从处理代码的引擎中抽象出特定领域的语言。这意味着用户可以实现所需的任何引擎。
- GPU/CPU 加速器: Apache Mahout 通过使用“本机求解器”来提高 Java 虚拟机的速度,该求解器在核心内移动以卸载到堆外或 GPU 内存以实现更快的计算。
- 推荐者: Apache Mahout 包括替代最小二乘法、共现和相关共现的实现,以扩展共现,使其可用于多个数据维度。
优点 | 缺点 |
使数据科学家更容易执行算法 | 调试可能需要相当长的时间 |
免费使用 | |
允许用户使用附加功能 |
4. ADAMS
ADAMS代表高级数据挖掘和机器学习系统,是一个专门用于 Java 的深度学习库。该库用于帮助促进创建反应性、数据驱动的工作流程,并提供大量操作和参与者。
ADAMS 是数据挖掘、检索处理和数据可视化的绝佳选择。ADAMS 在 GPLv3 上发布,可轻松将 ML 集成到业务流程中,并严格遵循“少即是多”的理念。因此,ADAMS 使用起来简单高效。
ADAMS 使用树状结构与控制参与者结合来定义数据如何流动,无需任何显式连接。
主要特点 // 产品亮点
尽管 ADAMS 可能不是您使用过的最灵活的库,但它确实具有许多关键功能,例如:
- 包括四种类型的参与者:独立(无输入,无输出)、源(仅输出)、变压器(输入和输出)和接收器(仅输入)
- 使用控制参与者来确定数据流或流程执行
- Actor 可以在树结构中隐式连接,而不是放置在画布上
优点 | 缺点 |
可以与 CI/CD 一起使用 | 需要 Java 11 或更高版本 |
易于集成并开始构建 | 需要 Maven 3.8+ |
需要 TextLive 2010+ |
5. JavaML
JavaML 是 ML 和数据挖掘算法的集合,其中包含每个算法的通用接口。该库可扩展,并为研究科学家和软件开发人员提供 API 。
主要特点 // 产品亮点
- 包括大量机器学习算法
- 为每种支持的算法提供通用接口
- 虽然没有 GUI,但开发人员会发现定义明确、易于使用的界面
- 算法的实现在科学文献中有清晰的描述
优点 | 缺点 |
源代码有详尽的记录。 | 自 2012 年以来尚未更新。 |
大量可用的代码示例和教程。 |
6. JSAT
JSAT 是一个 Java 库,它使解决机器学习问题变得更容易。所有 JSAT 代码都是独立的,没有外部依赖。JSAT 是纯 Java 的,是解决中小型问题的可靠解决方案。由于支持并行执行,JSAT 相对较快。
目前,JSAT 正在重构以适应 Java 8。由于 JSAT 是由一个人开发的,因此这个过程比团队开发要慢一些。由于它刚刚迁移到 Java 8,因此可能存在一些可以解决的问题。
主要特点 // 产品亮点
- JSAT 拥有所有框架中最大的算法集合之一。
- JSAT 比同类库更快。
- JSAT 是免费且开源的。
优点 | 缺点 |
轻松集成到任何 Java 项目中。 | 不支持较新的 Java 版本。 |
包括大多数 ML 用例的算法。 |
7. Apache OpenNLP
Apache OpenNLP是一个开源 Java 库,专门用于自然语言处理。该库由句子检测器、标记器、名称查找器、文档分类器、词性标记器、分块器和解析器等组件组成。
借助 Apache OpenNLP,开发人员可以为所有常见的 NLP 任务构建完整的 NLP 管道,例如句子分割、词性标注、命名实体识别、标记化、自然语言检测、分块、解析和共指解析。
主要特点 // 产品亮点
- 命名实体识别 (NER) – Apache OpenNLP 支持 NER,这使得提取位置、人物和事物的名称成为可能。
- 总结 - 总结功能允许您总结段落、文章、文档甚至集合。
优点 | 缺点 |
非常快的开发生命周期 | 发布的发布速度非常慢 |
出色的语言检测 | |
大大降低了开发 NLP 应用程序的门槛 |
结论
Java仍然是目前使用最广泛的编程语言之一。鉴于人工智能开发服务和机器学习的使用范围已经变得如此广泛,您可以肯定这些技术将在未来继续齐头并进。有了正确的 Java 机器学习库,您的开发团队(无论是内部还是外包)可以做的事情将无可限量。只要他们遵循Java 最佳实践,他们开发的程序就可以为您的公司创造奇迹。