扫雷游戏是晨晨和小璐特别喜欢的智力游戏,她俩最近沉迷其中无法自拔。
该游戏的界面是一个矩阵,矩阵中有些格子中有一个地雷,其余格子中没有地雷。 游戏中,格子可能处于己知和未知的状态。如果一个己知的格子中没有地雷,那么该 格子上会写有一个一位数,表示与这个格子八连通相邻的格子中地雷总的数量。
现在,晨晨和小璐在一个3行N列(均从1开始用连续正整数编号)的矩阵中进 行游戏,在这个矩阵中,第2行的格子全部是己知的,并且其中均没有地雷;而另外 两行中是未知的,并且其中的地雷总数量也是未知的。
晨晨和小璐想知道,第1行和第3行有多少种合法的埋放地雷的方案。
该游戏的界面是一个矩阵,矩阵中有些格子中有一个地雷,其余格子中没有地雷。 游戏中,格子可能处于己知和未知的状态。如果一个己知的格子中没有地雷,那么该 格子上会写有一个一位数,表示与这个格子八连通相邻的格子中地雷总的数量。
现在,晨晨和小璐在一个3行N列(均从1开始用连续正整数编号)的矩阵中进 行游戏,在这个矩阵中,第2行的格子全部是己知的,并且其中均没有地雷;而另外 两行中是未知的,并且其中的地雷总数量也是未知的。
晨晨和小璐想知道,第1行和第3行有多少种合法的埋放地雷的方案。
每组数据由一行仅由数字组成的长度为N的非空字符串组成,表示矩阵有3行N 列,字符串的第i个数字字符表示矩阵中第2行第i个格子中的数字。
保证字符串长度N <= 10000,数据组数<= 100。
2 22 000
6 1
题解: 用dp来求解,枚举数据太大。对于第一列,有3种状态,为0,1,2,确定第一列的个数之后,之后每一列的个数都已经确定,第i列的个数是由第i-1列应该放在第i列的个数确定(dp[i] =num[i-1]-dp[i-2]-dp[i-1]),并且每一列的个数必须不超过2。若dp[i]个数为0或者2,只有一种放置方式,dp【i】==1,有两种放置方式(上或者下),所以应乘2;
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mod=1e8+7;
const int M=10010;
int t;
char s[M];
int num[M],dp[M];
int main()
{
ll ans,res;
int tt;
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%s",s);
int n=strlen(s);
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++)
num[i]=s[i-1]-'0';
res=0;ans=1;
for(i=0;i<=num[1]&&i<=2;i++)
{
dp[1]=i;
ans=1;
for(j=2;j<=n;j++)
{
tt=num[j-1]-dp[j-1]-dp[j-2];
if(tt<0||tt>2)
break;
dp[j]=tt;
}
if(j<=n)
continue;
if(dp[n]+dp[n-1]!=num[n])
continue;
for(int k=1;k<=n;k++)
{
if(dp[k]==1)
ans=(ans*2)%mod;
}
res=(res+ans)%mod;
}
printf("%lld\n",res);
}
return 0;
}