caffe显存问题

原创 2018年04月17日 15:32:54

caffe在test的时候,blob的capacity_这个值是初始化是根据deploy的h和w来确定的,在真正开始跑的时候,可能test的时候输入尺寸并不是deploy的大小,比这个大小小的时候,在reshape之后,由于count_的值小于capacity_导致capacity_并不更新,从而在分配显存的时候,总是对不上,感觉显存多分配了。这是在图像超分遇到的问题,如果不存在这个用法,也就是说,处理的图像严格按照deploy的输入大小来run的话,就没问题。同样caffe处理使用了空间换时间的方式,图像转成向量,向量与kernel进行并发得到的结果还是向量,同样会使用更多的向量来接收处理结果,这些处理结果还会重组成最终的图像featuremap,所以中间会使用很多的显存,举个例子,bottom是1×64×108×132,top是1×32×54×66;kernel大小是5;那么首先会将bottom的图像转成适合当前kernel的向量,这么多像素(108×132×64)个5×5的向量,这就是图像转成向量的使用gpu进行多发机制的向量,同样接受的向量需要66×32×64×32这么多像素个接收向量,同样是kernel大小5×5的,最后才是向量转图像需要的66×54×32×1的featuremap空间,所以每一层实际的显存需求是这么大,而不是简单的count_ × 4这么多,还有其他的参数需求空间。所以根据kernel大小确定,所以,kernel越大,空间消耗越大,尽量避免。

同样,cpu模式的时候分配的空间也是根据capacity_确定的!

深度学习Caffe框架入门视频课程

深度学习框架caffe入门,详解网络配置中每一个层的结构和参数项,对于超参数配置文件详解每一个参数的含义以及选择策略。对于数据源实例演示了两种最常用的数据源LMDB和HDF5格式。课程涉及许多caffe框架的小技巧如绘制网络图和loss曲线,自定义python层等。希望大家通过学习可以熟练使用caffe去训练网络完成各自的任务。
  • 2016年12月23日 18:13

Caffe学习日记4

Caffe的万丈高楼(Net)是按照我们设计的图纸(prototxt),用Blob这些砖块筑成一层层(Layer)楼房,最后通过SGD方法(Solver)进行简装修(Train)、精装修(Finetu...
  • shengshengwang
  • shengshengwang
  • 2017-01-05 00:38:44
  • 1433

caffe小显存问题

问题描述: 本人使用硬件1050 2G显卡,在运行faster-rcnn中的./tools/demo.py时,出现以下问题: Loaded network /mydata/rcnn/py-faster...
  • u012283902
  • u012283902
  • 2017-03-18 09:39:41
  • 1834

caffe配置cuda时出现的几个问题

本次实验环境为: ubuntu16.04.2 gtx1050 2G 之前一直使用cpu进行实验,因为要使用faster rcnn,此时再使用cpu进行实验时,虽然按照网络上各种修改后,可以使用cp...
  • u012283902
  • u012283902
  • 2017-03-18 09:59:26
  • 486

caffe常见问题

1.显存不足 “error == cudaSuccess (2 vs. 0) out of memory” 减小该模型的train_val.prototxt中的batch_size(如果减到1还不...
  • xuhang0910
  • xuhang0910
  • 2016-02-28 16:36:18
  • 1074

caffe使用问题总结

之前训练时,每次必现,在第一次前向时出现数值溢出问题,导致训练失败。 最后发现是proposal_layer.py里的forward(self, bottom, top)里的cfg.phase写成了'...
  • a130098300
  • a130098300
  • 2016-10-17 17:03:14
  • 1207

caffe 使用LMDB数据库训练时 显存爆炸的问题

data_layer.cpp 中该层的析构函数定义的不够好,改成如下版本即可 template DataLayer::~DataLayer() {   this->JoinPrefetchThre...
  • qq_25295407
  • qq_25295407
  • 2017-03-09 14:55:46
  • 73

GPU显存 - 深度学习中 GPU 和显存分析

深度学习中 GPU 和显存分析 原文作者陈云. 本文原载于知乎专栏——人工智障的深度瞎学之路 深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为“资源” 不同操作都耗...
  • oJiMoDeYe12345
  • oJiMoDeYe12345
  • 2017-12-26 21:51:34
  • 1062

用caffe在notebook(gpu/cpu性能有限)上训练数据出现的错误

由于受硬件性能瓶颈的限制,在笔记本上训练数据量不能太大;并且训练的时候网络结构的大小、prototxt中设置的batch_size大小也严重供收到限制。 自己笔记本的配置情况是: i5-2410处理器...
  • songyu0120
  • songyu0120
  • 2015-07-02 16:25:00
  • 3228

CAFFE源码学习笔记之二-Syncmemory

一、前言 在CPU与GPU合作的异构体系中,CPU负责逻辑性强的事务处理,GPU只负责高度线程化的数据处理。在这个体系中,CPU和GPU之间将会存在大量的数据交换,其中涉及到的内存操作就有 Mal...
  • sinat_22336563
  • sinat_22336563
  • 2017-03-30 20:41:48
  • 509
收藏助手
不良信息举报
您举报文章:caffe显存问题
举报原因:
原因补充:

(最多只允许输入30个字)