P02114058郭梓阳——相对熵的非负性的推导

目录

一、Jensen不等式证明

二、相对熵

1、相对熵的定义

2、非负性证明

 

 

    首先我们简要介绍一下熵的概念。“熵”这一概念并不仅仅存在于物理化学中,还应用于信息论中。熵是结果不确定度的一种度量。shannon熵定义为:eq?H%28x%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dp_%7Bi%7D%5Ccdot%20logp_%7Bi%7D

其中X为随机变量,它在K个事件x1,x2,x3离散集合上的概率有P(xi)
 ps:我们可以试着证明一下当其实均匀分布时,它的熵值最大。

相对熵又称KL散度,信息散度,是两个概率分布间差异的非对称性度量。令P(X),Q(X)是随机变量X的概率分布,则在其实离散型随机变量的情况下,相对熵为:

eq?D%28p%7C%7Cq%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dp_%7Bi%7D%5Ccdot%20log%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D


  故我们观察相对熵的形式可以发现,它可以看做是对数几率(计分矩阵中的分值)的期望,即将P(X)看做是在匹配模型M中的残基a,b的联配概率,而Q(X)看做是无关模型中的残基a,b的独立出现的概率。故相对熵可作为模型的期望分值。
  回归本文的主题,即证明相对熵的正定性。因为证明的过程中用到了jensen
不等式,所以我们先证明一下jensen不等式。

一、Jensen不等式证明

以下凸函数为例

7858e63cb6ff4d34931257a21229c591.png

 

Jensen不等式概括了凸函数的割线位于函数图上方的陈述,这是Jensen对两点的不等式:割线由凸函数的加权均值组成(对于 t∈[0,1]):

eq?tf%28x_%7B1%7D%29+%281-t%29f%28x_%7B2%7D%29

函数的图形是加权均值的凸函数:

eq?f%28tx_%7B1%7D+%281-t%29x_%7B2%7D%29

因此,Jensen 不等式是 :

eq?f%28tx_%7B1%7D+%281-t%29x_%7B2%7D%29%5Cleq%20tf%28x_%7B1%7D%29+%281-t%29f%28x_%7B2%7D%29

推广到n个点,即

eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7Df%28x_%7Bi%7D%29%5Cgeqslant%20f%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7Dx_%7Bi%7D%29其中eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7D%3D1

当且仅当 x1=x2=...=xn时成立。

二、相对熵

1、相对熵的定义

关于相对熵的理解CSDN上已经有大量文献可研究,本文侧重于对相对熵非负性的研究。在此只简单阐述。
相对熵 (Relative Entropy) 也称 KL 距离,设   是离散随机变量  的两个概率分布,则 p(x)对 q(x) 的相对熵是:

eq?D%28p%7C%7Cq%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dp_%7Bi%7D%5Ccdot%20log%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D

其中0%29%3D%5Cinfty

2、非负性证明

由于eq?D%28p%7C%7Cq%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dp_%7Bi%7D%5Ccdot%20log%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D%5Ccdot%20q_%7Bi%7D%5Ccdot%20log%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D

eq?%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D%3Dx_%7Bi%7D,则eq?D%28p%7C%7Cq%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7D%5Ccdot%20x_%7Bi%7D%5Ccdot%20logx_%7Bi%7D

再令f(x)=xlogx,易得f(x)=xlogx为下凸函数

eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7Df%28x_%7Bi%7D%29%5Cgeqslant%20f%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7Dx_%7Bi%7D%29

eq?D%28p%7C%7Cq%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7D%5Ccdot%20x_%7Bi%7Dlog%28x_%7Bi%7D%29%5Cgeqslant%20%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7D%5Ccdot%20x_%7Bi%7D%29log%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7D%5Ccdot%20x_%7Bi%7D%29eq?%3D%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7D%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D%29log%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dq_%7Bi%7D%5Cfrac%7Bp_%7Bi%7D%7D%7Bq_%7Bi%7D%7D%29%3D1%5Ccdot%20log1%3D0

当且仅当x1=x2=x3=...=xn,即eq?%5Cfrac%7Bp_%7B1%7D%7D%7Bq_%7B1%7D%7D%3D%5Cfrac%7Bp_%7B2%7D%7D%7Bq_%7B2%7D%7D%3D...%3D%5Cfrac%7Bp_%7Bn%7D%7D%7Bq_%7Bn%7D%7D%3D%5Cfrac%7Bp_%7B1%7D+p_%7B2%7D+...+p_%7Bn%7D%7D%7Bq_%7B1%7D+q_%7B2%7D+...+q_%7Bn%7D%7D%3D1

即当且仅当eq?p_%7Bi%7D%3Dq_%7Bi%7D时成立,证明完毕。

由于相对熵是非负的,通常可用该性质证明信息论中的一些定理和性质。


 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值