琴生不等式 条件期望的Jensen不等式的证明

本文详细介绍了琴生不等式及其加权形式,证明了该不等式对于凸函数和凹函数的情况,并通过数学归纳法展示了其证明过程。此外,还探讨了如何使用琴生不等式证明平方平均不等式和其他平均不等式,以及函数的凹凸性的判断。最后,文章提到了条件期望的Jensen不等式在概率论中的应用。
摘要由CSDN通过智能技术生成

琴生不等式

  琴生(Jensen) 不等式(也称为詹森不等式):(注意前提、 等号成立条件)

  设f(x)为 凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为 凹函数,f[(x1+x2+……+xn)/n]≥f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。
  加权形式为:
  f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中
  ai≥0(i=1,2,……,n),且a1+a2+……+an=1.
  凸函数的概念:
  【定义】如果 函数f(x)满足对定义域上任意两个数x1,x2都有(f(x1)+f(x2))/2≥f((x1+x2)/2),那么f(x)为凸函数,或下凸函数。
  【定义】如果函数f(x)满足对定义域上任意两个数x1,x2都有(f(x1)+f(x2))/2≤f((x1+x2)/2),那么f(x)为凹函数,或上凸函数。
  同样,如果不等式中等号只有x1=x2时才成立,我们分别称它们为严格的凹凸函数
  琴生不等式说,
  对于任意的凸函数f(x)以及其定义域上n个数x1,x2,...,xn,那么都有(f(x1)+f(x2)+...+f(xn))/n≥f((x1+x2+...+xn)/n)
  对于任意的凹函数f(x)以及其定义域上n个数x1,x2,...,xn,那么都有(f(x1)+f(x2)+...+f(xn))/n≤f((x1+x2+...+xn)/n)
 
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值