实验课2 5.15

# 1.如何获取所有股票信息
a=get_all_securities(types=["stock"])
a

# 1.如何获取所有期货信息
a=get_all_securities(types=["futures"])
a

 # 2.获取指数成分股
security=get_index_stocks("000300.XSHG")
security[:10]  #取前10只股票作为股池

# 3.获取行情数据
price_1=attribute_history("000002.XSHE",5,unit="1d",fields=["open","close"])
price_1

price_2=history(5,unit="1d",field="open",security_list=["000001.XSHE","000002.XSHE"])
price_2 

price_3=get_price("000001.XSHE",start_date="2023-01-01",end_date="2023-05-01",fields=["open"])
price_3     # price_3["open"].mean()

# 4.获取财务数据
q=query(valuation).filter(valuation.code=="000001.XSHE")
get_fundamentals(q)

q=query(valuation.market_cap,valuation.pe_ratio).filter(valuation.code=="000001.XSHE")  #获取单个数据字段
get_fundamentals(q)

q=query(indicator).filter(indicator.code=="000001.XSHE")  
get_fundamentals(q,date="2022-05-01")

q=query(indicator).filter(indicator.code.in_(["000001.SXHE","000002.XSHE"]))  
get_fundamentals(q,date="2022-05-01")

# 导入函数库
from jqdata import *

# 初始化函数,设定基准等等
def initialize(context):
    # 1.设定沪深300作为基准
    set_benchmark('000300.XSHG')
    # 2.开启动态复权模式(真实价格)
    set_option('use_real_price', True)
    ### 股票相关设定 ###
    # 3.股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')
    # 4.设定股票标的
    g.security="000001.XSHE"
 
def handle_data(context, data):
    get_current_data()[g.security].day.open
    print(price)
# 导入函数库
from jqdata import *

# 初始化函数,设定基准等等
def initialize(context):
    # 1.设定沪深300作为基准
    set_benchmark('000300.XSHG')
    # 2.开启动态复权模式(真实价格)
    set_option('use_real_price', True)
    ### 股票相关设定 ###
    # 3.股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')
    # 4.设定股票标的
    g.security="000001.XSHE"
 
def handle_data(context, data):
    print(context.portfolio.positions[g.security].total_amount)

一个简单交易策略的实现:

# 导入函数库
from jqdata import *

# 初始化函数,设定基准等等
def initialize(context):
    # 1.设定沪深300作为基准
    set_benchmark('000300.XSHG')
    # 2.开启动态复权模式(真实价格)
    set_option('use_real_price', True)
    ### 股票相关设定 ###
    # 3.股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')
    # 4.设定股票标的,设置股票池
    g.security=get_index_stocks("000300.XSHG")
 
def handle_data(context, data):
    to_buy=[]
    for stock in g.security:
        p = get_current_data()[stock],last_price
        amount = context.portfolio.positions[stock].total_amount
        cost = context.portfolio.positions[stock].avg_cost
        if p > 1.25*cost and amount!=0:
            order_target(stock,0)
        if p < 0.9*cost and amount!=0:
            order_target(stock,0)
        if p < 10 and amount == 0:
            to_buy.append(stock)
    cash=context.portfolio.available_cash
    cash_per_stock=cash/len(to_buy)
    for i in to_buy:
        order_value(i,cash_per_stock)

## 讲师介绍: 近 5 年个人投资理财年化收益平均超 25%。如果你也想提升自己的睡后收入,轻松赚钱,那么这门课就是为你量身打造。课程基于一个完整真实的量化交易业务来讲授,并融入老师的理财经验以及使用编程技术辅助投资的技巧,让你面对各种复杂投资情况也能做到游刃有余。 ## 学习目标: 从不懂“理财”开始到实现自动交易,成为一个“技术流”理财高手 编程技术 + 核心量化策略 + 交易系统开发 + 讲师经验分享,学会用技术辅助理财 本课程从最基础的什么是量化开始讲起,即使对投资理财不了解同样可以学习,轻松入门无压力。 从如何获取数据开始,到实现实盘交易,课程对量化交易的每一步都进行细致讲解,为你铺开量化交易的每一个细节。 不仅仅只是教你学会使用某种工具,更会教给你量化交易的投资思想,让你面对各种情况都游刃有余。 ## 课程亮点: 设计适合自己并能适应市场的交易策略,才是量化交易的灵魂 课程亲手带你设计并实现两种交易策略,快速培养你的策略思维能力 1. 择时策略:通过这个策略学会如何利用均线,创建择时策略,优化股票买入卖出的时间点。2. 选股策略:掌握选股策略的核心逻辑,并基于收益率创建动量选股策略,并验证其有效性。 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 第三方平台大而全,不易扩展,效率还差,信息安全也是大问题,打造自己的交易平台才是更优解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值