level set 介绍4(水平集方法)

2.5 水平集方法

2.4中的时候,我们已经知道曲线演化主要涉及到两个几何参数,一个是曲线的曲率,一个是曲线的方向矢量,而这两个参数的计算一并不是一件容易的事情,怎么有效的更方便处理曲线的几何参数的计算方法,而水平集方法正好满足这些要求。这也是水平集方法最为吸引人的地方。

水平集方法最早是由OsherSethian提出,用于解决遵循热力学方程下的火苗的外形变化过程。其基本思想是将平面闭合曲线隐含地表达为三维连续函数曲面φ(x ,y)的一个具有相同函数值的同值曲线,通常是{φ=0},称为零水平集,而φ(x ,y)称为水平集函数。这就是我们前面关于水平集函数的定义。

那么什么是水平集方法那,我的理解就是将低维的曲线转化到高维曲面的方法(在介绍水平集的主要思想时我们已经涉及)。具体的做法文献[4]如下:

给定平面上的一条封闭曲线,以曲线为边界,把整个平面划分为两个区域:曲线的外部和内部区域。在平面上定义距离函数φ(x ,y ,t )=±d,其中d是点(x ,y)到曲线的最短距离,函数符号取决于该点在曲线内部还是外部,一般定义曲线内部点的距离为负值,t表示时间。在任意时刻,曲线上的点就是距离函数值为零的点(即距离函数的零水平集)。尽管这种转化使问题在形式上变得复杂,但在问题的求解上带来很多优点,最大的优点是曲线的拓扑变化能够得到很自然的处理,而且可以获得唯一的满足熵条件的解。

其实上面所说的这段内容,我们在介绍水平集的主要思想时候都已经大多说了,只是这里有一个距离函数的概念,这是理解水平集方法的一个很重要的概念。对于上面文献[4]给出的描述,我要说明的是,d是点(x,y)到曲线的最短距离,这里就有些问题,点(x,y)是那里的点,到曲线是那的曲线,文中很含糊,而文献[11]是这样描述的:取初始闭合曲线 t=0时的曲线,生成的符号距离函数(signed Distance Dunction),记为SDF,作为水平集函数的零水平集 。即

     

式中的d是点x到初始曲线 的距离,其符号是根据点x在闭合曲线 的内外部而定,如果x位于 的内部,则取负号,反之取正号.当然也可以取相反的选择.

所以从中可以看出,这里的点(x,y)应该是曲线上的点,这里的目标曲线是初始曲线。这样理解文献中的做法就变的容易理解。为更好的理解给出下面的图示:

初始轮廓

Z=d(x,y)

Y

X

Z=ψ(Ґ(t)t)

5

5可以比较清楚的看出,距离函数在水平集方法中的重要性,结合前面我们所说的水平集函数和水平集的概念,在该图中也较好的体现了出来,二维平面中的圆和三维圆锥中的水平截面就是可以是我们所说的水平集,而水平集函数就是三维坐标系中的圆锥形。对于三维坐标中不同时刻的水平截面就对应了不同的二维坐标中的曲线。

  • 1
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 31
    评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论 31

打赏作者

limax_2004

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值