SIFT匹配

论文名称:Distinctive Image Features from Scale-Invariant Keypoints
原文链接:https://www.cs.ubc.ca/~lowe/keypoints/
参考链接1:https://blog.csdn.net/amiee521/article/details/70154311
参考链接2:https://blog.csdn.net/weixin_38404120/article/details/73740612

步骤

  1. 获取到DOG特征图;
  2. 通过邻域内最小/大求得极值点;
  3. 空间尺度函数泰勒展开进行关键点的精确定位和通过Hissan矩阵去除边缘点;
  4. 确定关键点的方向,并进行旋转到主方向,生成特征描述子(SIFT特征向量已经去除了尺度变化、旋转等几何变形因素的影响,再继续将特征向量的长度归一化,则可以进一步去除光照变化的影响);
  5. 采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。取图像1中的某个关键点,并找出其与图像2中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点。降低这个比例阈值,SIFT匹配点数目会减少,但更加稳定
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页