在了解图像特征匹配前,需要清楚,两张照片之所以能匹配得上,是因为其特征点的相似度较高。
而寻找图像特征点,我们要先知道一个概念,就是“图像尺度空间”。
平时生活中,用人眼去看一张照片时,随着观测距离的增加,图像会逐渐变得模糊。那么计算机在“看”一张照片时,会从不同的“尺度”去观测照片,尺度越大,图像越模糊。
那么这里的“尺度”就是二维高斯函数当中的σ值,一张照片与二维高斯函数卷积后得到很多张不同σ值的高斯图像,这就好比你用人眼从不同距离去观测那张照片。所有不同尺度下的图像,构成单个原始图像的尺度空间。“图像尺度空间表达”就是图像在所有尺度下的描述。
尺度是自然客观存在的,不是主观创造的。高斯卷积只是表现尺度空间的一种形式。
2.“尺度空间表达”与“金字塔多分辨率表达”
尺度空间表达——高斯卷积
高斯核是唯一可以产生多尺度空间的核。在低通滤波中,高斯平滑滤波无论是时域还是频域都十分有效。我们都知道,高斯函数具有五个重要性质:
(1)二维高斯具有旋转对称性;
(2)高斯函数是单值函数;
(3)高斯函数的傅立叶变换频谱是单瓣的;
(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的;
(5)二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长。
一个图像的尺度空间L(x,y,σ) ,定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ)卷积运算。
二维空间高斯函数表达式:
图像的尺度空间就是:二维高斯函数与原始图像卷积运算后的结果,
尺度空间的表达式: