网络分析(Network Analysis)入门篇(四) 网络的演化——随机图模型

目录

  1. 网络节点的性质
  2. 网络的性质
  3. 网络层次性评价
  4. 动态网络演化——随机图模型
  5. 动态网络演化——有偏好的交友模型

之前的内容,我们了解的都是一个静态的网络,比如在某一个时刻中,网络节点之间的连接关系,而这里我们要说的是一个动态的网络,即网络的结构随着时间的变化而变化。这样的例子在实际中相当的常见,比如分析随着时间的推移,企业的层次结构是否变得合理了,还是说上半年企业发展的非常合理,而到了下半年一个企业的层次性开始变差。或者再比如,我们想知道一个新员工是如何融入团体,如何能让不同性格的新员工都能以最快的速度成为团队的一员?那我们就需要分析一般员工随着时间的推移,先和谁建立了联系,之后又和谁称为了伙伴,进而分析它的交友是不是有效,是不是正常。

在这里我们通过计算机模拟的方式,介绍一个经典的动态网络的模型,随机图模型(Random graphs)在随机图中,我们模仿这样的一个环境,假如一个团体中有很多的个体,之后两个人随机的认识并且成为朋友,那么随着时间的推移,这个团体会变成什么样子呢?或者说这个以人为节点,边代表好友关系的网络会是什么样子的呢?

为了了解这些,我们使用软件对这个网络的状况进行一次模拟,因为网站对图片大小有限制,所以这里没法展示完整的动图,这里就是我们模拟时候的状况,最后随着时间的推移会形成一个很大的团体,也叫做giant component。
动态随机图模型

最终随机图模型形状
一个很重要的结论,就是我们观察图片左下角的框,那里表示的是每个节点的度中心性,(还记得什么是度中心性吗?学而时习之哦),这里度中心性就是每个节点和其他多少个节点直接相连,可以理解为一个人交到了多少个好朋友。统计结果显示,当度中心度到达1左右的时候,也就是每个人都有一个好朋友之后,网络中最大的成分会爆炸性增长,也就是说认识朋友的圈子会快速的增加。

还有一个结论是在这种情况下,如果在中途统计网络中所有人员交朋友的数量,我们会发现这个数量实际上是符合正态分布的。

  • 12
    点赞
  • 73
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
多维BP神经网络模型是一种常见的回归模型,用于解决多维输入与输出之间的映射关系。下面是使用C++带类实现多维BP神经网络模型的示例代码: ```cpp #include <iostream> #include <vector> #include <cmath> #include <ctime> #include <cstdlib> using namespace std; class Neuron { public: Neuron(int num_inputs) { for (int i = 0; i < num_inputs; i++) { weights.push_back(rand() / double(RAND_MAX)); } bias = rand() / double(RAND_MAX); } double fire(vector<double>& inputs) { double activation = 0.0; for (int i = 0; i < inputs.size(); i++) { activation += inputs[i] * weights[i]; } activation += bias; return activation; } void update_weights(vector<double>& inputs, double delta, double learning_rate) { for (int i = 0; i < inputs.size(); i++) { weights[i] += learning_rate * delta * inputs[i]; } bias += learning_rate * delta; } private: vector<double> weights; double bias; }; class NeuralNetwork { public: NeuralNetwork(int num_inputs, int num_hidden, int num_outputs, double learning_rate) : learning_rate(learning_rate), hidden_layer(num_hidden, Neuron(num_inputs)), output_layer(num_outputs, Neuron(num_hidden)) {} vector<double> predict(vector<double>& inputs) { vector<double> hidden_activations; for (int i = 0; i < hidden_layer.size(); i++) { hidden_activations.push_back(sigmoid(hidden_layer[i].fire(inputs))); } vector<double> output_activations; for (int i = 0; i < output_layer.size(); i++) { output_activations.push_back(sigmoid(output_layer[i].fire(hidden_activations))); } return output_activations; } void train(vector<double>& inputs, vector<double>& targets) { vector<double> hidden_activations; for (int i = 0; i < hidden_layer.size(); i++) { hidden_activations.push_back(sigmoid(hidden_layer[i].fire(inputs))); } vector<double> output_activations; for (int i = 0; i < output_layer.size(); i++) { output_activations.push_back(sigmoid(output_layer[i].fire(hidden_activations))); } vector<double> output_deltas; for (int i = 0; i < output_layer.size(); i++) { double error = targets[i] - output_activations[i]; output_deltas.push_back(error * sigmoid_derivative(output_activations[i])); } vector<double> hidden_deltas; for (int i = 0; i < hidden_layer.size(); i++) { double error = 0.0; for (int j = 0; j < output_layer.size(); j++) { error += output_deltas[j] * output_layer[j].get_weight(i); } hidden_deltas.push_back(error * sigmoid_derivative(hidden_activations[i])); } for (int i = 0; i < output_layer.size(); i++) { output_layer[i].update_weights(hidden_activations, output_deltas[i], learning_rate); } for (int i = 0; i < hidden_layer.size(); i++) { hidden_layer[i].update_weights(inputs, hidden_deltas[i], learning_rate); } } private: double learning_rate; vector<Neuron> hidden_layer; vector<Neuron> output_layer; double sigmoid(double x) { return 1.0 / (1.0 + exp(-x)); } double sigmoid_derivative(double x) { return sigmoid(x) * (1.0 - sigmoid(x)); } }; int main() { srand(time(NULL)); vector<vector<double>> inputs = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; vector<vector<double>> targets = {{0}, {1}, {1}, {0}}; NeuralNetwork nn(2, 10, 1, 0.1); for (int i = 0; i < 10000; i++) { int rand_index = rand() % inputs.size(); nn.train(inputs[rand_index], targets[rand_index]); } for (int i = 0; i < inputs.size(); i++) { vector<double> output = nn.predict(inputs[i]); cout << "Input: " << inputs[i][0] << ", " << inputs[i][1] << " Output: " << output[0] << endl; } return 0; } ``` 该示例代码实现了一个多维BP神经网络模型,用于解决XOR运算问题。其中,Neuron类表示神经元,NeuralNetwork类表示神经网络。在Neuron类中,weights表示每个输入的权重,bias表示偏差。在NeuralNetwork类中,hidden_layer和output_layer分别表示隐藏层和输出层。predict方法用于进行预测,train方法用于训练模型。sigmoid函数和sigmoid_derivative函数分别表示激活函数和激活函数的导数。在main函数中,我们使用该模型解决XOR运算问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值