1、描述
你和你的朋友,两个人一起玩Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1- 3块石头,拿掉最后一个石头的人就是获胜者。你作为先手
你们是聪明人,每一步都是最优解,编写一个函数,来判断你是否可以在给定石头数量的情况下赢得比赛。
例:输入:4
输出:false
解释:如果堆中有4块石头,那么你永远不会赢得比赛;因为无论你拿走1块、2块还是3块石头,最后一块石头总是会被你的朋友拿走。
2、算法
1)递归
func canWinNim(_ n: Int)->Bool{
/*
递归
*/
if n <= 0 {
return false
}
if n <= 3 {
return true
}
return !canWinNim(n-1) || !canWinNim(n-2) || !canWinNim(n-3)
}
2)极小化极大
思想:
如果堆中石头的数量 n 不能被 4 整除,那么你总是可以赢得 Nim 游戏的胜利。
推理:
让我们考虑一些小例子。显而易见的是,如果石头堆中只有一块、两块、或是三块石头,那么在你的回合,你就可以把全部石子拿走,从而在游戏中取胜。而如果就像题目描述那样,堆中恰好有四块石头,你就会失败。因为在这种情况下不管你取走多少石头,总会为你的对手留下几块,使得他可以在游戏中打败你。因此,要想获胜,在你的回合中,必须避免石头堆中的石子数为 4 的情况。
时间复杂度:O(1)
func canWinNim(_ n: Int)->Bool{
/*
极小化极大
*/
return n % 4 != 0
}