swift算法:Nim游戏

1、描述

你和你的朋友,两个人一起玩Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1- 3块石头,拿掉最后一个石头的人就是获胜者。你作为先手

你们是聪明人,每一步都是最优解,编写一个函数,来判断你是否可以在给定石头数量的情况下赢得比赛。

例:输入:4

        输出:false

        解释:如果堆中有4块石头,那么你永远不会赢得比赛;因为无论你拿走1块、2块还是3块石头,最后一块石头总是会被你的朋友拿走。

 

2、算法

1)递归

 func canWinNim(_ n: Int)->Bool{
        
        /*
         递归
         */
        if n <= 0 {
            return false
        }
        if n <= 3 {
            return true
        }
        return !canWinNim(n-1) || !canWinNim(n-2) || !canWinNim(n-3)
    }

2)极小化极大

思想:
         如果堆中石头的数量 n 不能被 4 整除,那么你总是可以赢得 Nim 游戏的胜利。

  推理:
         让我们考虑一些小例子。显而易见的是,如果石头堆中只有一块、两块、或是三块石头,那么在你的回合,你就可以把全部石子拿走,从而在游戏中取胜。而如果就像题目描述那样,堆中恰好有四块石头,你就会失败。因为在这种情况下不管你取走多少石头,总会为你的对手留下几块,使得他可以在游戏中打败你。因此,要想获胜,在你的回合中,必须避免石头堆中的石子数为 4 的情况。

时间复杂度:O(1)

func canWinNim(_ n: Int)->Bool{
        /*
         极小化极大 

         */
        return n % 4 != 0
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值