容斥原理 博弈论(多种Nim游戏解法)


容斥原理

容斥原理的简介

容斥原理是组合数学中的一个重要原理,讨论了满足某些条件的元素个数问题。

对于 n n n 个集合 A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An,定义他们的并集包含的元素个数为 ∣ A 1 ∪ A 2 ∪ . . . ∪ A n ∣ |A_1∪A_2∪...∪A_n| A1A2...An,那么根据容斥原理,有:

∣ A 1 ∪ A 2 ∪ ⋯ ∪ A n ∣ |A_1 \cup A_2 \cup \dots \cup A_n| A1A2An
= ∣ A 1 ∣ + ∣ A 2 ∣ + ⋯ + ∣ A n ∣ = |A_1| + |A_2| + \dots + |A_n| =A1+A2++An
− ∣ A 1 ∩ A 2 ∣ − ⋯ − ∣ A n − 1 ∩ A n ∣ - |A_1 \cap A_2| - \dots - |A_{n-1} \cap A_n| A1A2An1An
+ ∣ A 1 ∩ A 2 ∩ A 3 ∣ + ⋯ + ( − 1 ) n + 1 ∣ A 1 ∩ A 2 ∩ ⋯ ∩ A n ∣ + |A_1 \cap A_2 \cap A_3| + \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n| +A1A2A3++(1)n+1A1A2An

(奇数项为正 偶数项为负)

例如:
在这里插入图片描述
根据上图可得
∣ A ∪ B ∪ C ∣ = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ∩ B ∣ − ∣ B ∩ C ∣ − ∣ A ∩ C ∣ + ∣ A ∩ B ∩ C ∣ |A \cup B \cup C|= |A|+|B|+|C|-|A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C| ABC=A+B+CABBCAC+ABC

对于 n n n 个集合 A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An,其项数可以表示为 C n 1 + C n 2 + ⋯ + C n n C_n^1 + C_n^2+\dots+C_n^n Cn1+Cn2++Cnn 通过数学计算可得 C n 1 + C n 2 + ⋯ + C n n = 2 n − 1 C_n^1 + C_n^2+\dots+C_n^n = 2^n - 1 Cn1+Cn2++Cnn=2n1,用此再乘以每项的时间复杂度便可以得到整体时间复杂度。

另外也可以通过数学计算得到 C n 1 − C n 2 + ⋯ + ( − 1 ) n − 1 C n n = 1 C_n^1 - C_n^2+\dots+(-1)^{n-1}C_n^n = 1 Cn1Cn2++(1)n1Cnn=1


能被整除的数(典型例题)

给定一个整数 n n n m m m 个不同的质数 p 1 , p 2 , … , p m p_1,p_2,\dots,p_m p1,p2,,pm

请你求出 1 1 1 ~ n n n 中能被 p 1 , p 2 , … , p m p_1,p_2,\dots,p_m p1,p2,,pm 中的至少一个数整除的整数有多少个。

输入格式:
第一行包含整数 n n n m m m

第二行包含 m m m 个质数

输出格式:
输出一个整数,表示满足条件的整数的个数。

数据范围:
1 ≤ m ≤ 16 1 \leq m \leq 16 1m16
1 ≤ n , p i ≤ 1 0 9 1 \leq n,p_i \leq 10^9 1n,pi109

输入样例:

10 2
2 3

输出样例:

7

实现思路

计算 1 1 1 ~ n n n 中能被 p i p_i pi 一个数整除的整数的方法为 ⌊ n p i ⌋ \huge \lfloor \frac{n}{p_i} \rfloor pin

由于不同质数间存在相同的可被整除的整数情况,这时候直接计算就会导致重叠部分计算多次,因此需要将重复的部分剔除出去,这里使用容斥原理来进行剔除操作。

计算 1 1 1 ~ n n n 中能被 p i , p j , p k p_i,p_j,p_k pi,pj,pk 多个数整除的整数(类似于重叠部分)的方法为 ⌊ n p i ∗ p j ∗ p k ⌋ \huge \lfloor \frac{n}{p_i*p_j*p_k} \rfloor pipjpkn

m m m 个质数看作 m m m 个集合, 由于 m m m 较小,我们可以使用int类型的二进制形式(32 bit)的变量来表示对每个集合的选取情况,1代表选用,0代表未选用。

比如:1110 可看作为选用集合 1 2 3,而集合 0 未选用,这样便可以通过一个int类型遍历来表示当前的集合选用情况。

通过二进制数模拟所有集合选用情况,再利用遍历对二进制数进行解码操作,而后进行正负性相加减便可以得到最终结果。


代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;

const int N = 20;
int p[N];

int main()
{
	int n, m, res = 0;
	cin >> n >> m;
	for (int i = 0; i < m; ++i) cin >> p[i];

	// 模拟对所有集合的每一种选用情况
	for (int i = 1; i < 1 << m; ++i) // 从1开始模拟
	{
		int t = 1, cnt = 0;
		for (int j = 0; j < m; ++j) // 将二进制数所表示的选用情况提取出来(解码)
		{
			if (!(i >> j & 1)) continue;
			if ((long long)t * p[j] > n)
			 // 当质数间的乘积大于n时,对应的质数重叠情况只有0个
			{
				t = -1;
				break;
			}
			t *= p[j];
			cnt++;
		}
		if (t != -1)
		{
			int sign = (cnt & 1) ? 1 : -1; // 判断奇偶性
			res = res + n / t * sign;
		}
	}
	cout << res << endl;
	return 0;
}

时间复杂度: O ( 2 m ∗ m ) O(2^m*m) O(2mm)

通过公式 C n 1 + C n 2 + ⋯ + C n n = 2 n − 1 C_n^1 + C_n^2+\dots+C_n^n = 2^n - 1 Cn1+Cn2++Cnn=2n1 可得遍历所有项的时间复杂度为 O ( 2 m ) O(2^m) O(2m), 对单独一项的时间复杂度为 O ( m ) O(m) O(m),这是因为使用二进制数来表示情况,所以需要时间复杂度为 O ( m ) O(m) O(m) 的遍历来进行解码操作,提取其中的选取信息。


扩展:用DPS实现

const int N = 20;
int n, m, p[N], res;

// num-代表当前质数乘积 
// cur-代表指向质数数组的指针
// cnt-代表所选用集合的总数
void dfs(int num, int cur, int cnt)
{
	if (cur == m) // 当cur把质数数组都遍历一遍之后代表该种选用情况的结束
	{
		if (cnt) // 排除一个质数都不选的选用情况
		{
			if (cnt % 2) res += n / num;
			else res -= n / num;
		}
		return;
	}
	dfs(num, cur + 1, cnt); // 不选用当前质数的集合
	dfs(num * p[cur], cur + 1, cnt + 1); // 选用当前质数的集合
}
int main()
{
	cin >> n >> m;
	for (int i = 0; i < m; ++i) cin >> p[i];
	dfs(1, 0, 0);
	cout << res << endl;
	return 0;
}

时间复杂度: O ( 2 m ) O(2^m) O(2m)

由于不用二进制数来模拟选取情况,所以也就不需要时间复杂度为 O ( m ) O(m) O(m) 的遍历来从二进制数中提取出选取情况的解码操作。


博弈论

博弈论(Game Theory) 是研究 多方参与者 在某种竞争或合作情况下进行的策略选择相互作用的一门数学理论。它主要研究参与者如何通过各种策略最大化自己的收益。


博弈论中的相关性质

公平组合游戏(Impartial Combinatorial Game, ICG)是组合博弈论中的一个重要概念。

所谓公平组合游戏,是指具有以下特征:

  1. 游戏中只有两个玩家,分先手和后手。
  2. 两者地位完全对等,有同样的可选行动。
  3. 每个位置要么先手必胜,要么后手必胜,不存在平局。
  4. 参与者都会采取最优策略。

注:城建棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不符合公平组合游戏。

一些典型的公平组合游戏包括:

  • Nim游戏:从几堆物品中拿走任意数量的游戏。
  • 威佐夫游戏:在图上移动棋子吃掉对方的游戏。
  • 没有后效应的游戏:当前行动不会对之后可行动产生影响。

通过对这类游戏规律的研究,发展出了一套完整的理论体系,建立了组合博弈论这一独立的学科分支。公平组合游戏抽象化地反映了很多现实世界的竞争情况。


博弈论的相关结论

先手必胜状态:

  • 在这个游戏状态下,先手玩家有一个必胜策略,可以通过采取相应的游戏行动最终获胜,不论对手如何行动。
  • 即先手玩家可以保证自己赢得游戏。这个游戏状态对先手玩家有利。

先手必败状态:

  • 在这个游戏状态下,先手玩家无论采取何种行动最终都会输,后手玩家存在必胜策略。
  • 即该状态下无论先手玩家如何行动,后手玩家都可以通过相应的行动获取最终的胜利。这个状态对后手玩家有利。
  • 后手玩家可以保证自己赢得游戏。

对于NIM游戏,在两名选手都足够聪明每一步都是最优解的情况下:

a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n = 0 a_1 \oplus a_2 \oplus \dots \oplus a_n = 0 a1a2an=0 先手必败

a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_n \neq 0 a1a2an=0 先手必胜

就是把所有堆的石子个数异或起来,结果是零,先手必败,不是零,先手必胜。


先手必败必胜的证明

①当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n = 0 a_1 \oplus a_2 \oplus \dots \oplus a_n = 0 a1a2an=0 时,先手必败:

这个结论实际上是基于一个性质,即对于任意一个非负整数 x x x,有 x ⊕ x = 0 x \oplus x = 0 xx=0。基于这个性质,我们可以证明在这种情况下,先手必败。

假设初始状态下,有 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n = 0 a_1 \oplus a_2 \oplus \dots \oplus a_n = 0 a1a2an=0。考虑以下情况:

  • 如果先手选择 a 1 a_1 a1,那么剩下的异或和就变为 ( a 2 ⊕ ⋯ ⊕ a n ) (a_2 \oplus \dots \oplus a_n) (a2an)
  • 如果先手选择 a 2 a_2 a2,那么剩下的异或和就变为 ( a 1 ⊕ a 3 ⊕ ⋯ ⊕ a n ) (a_1 \oplus a_3 \oplus \dots \oplus a_n) (a1a3an)
  • 以此类推,如果先手选择 a i a_i ai,剩下的异或和就变为 ( a 1 ⊕ ⋯ ⊕ a i − 1 ⊕ a i + 1 ⊕ ⋯ ⊕ a n ) (a_1 \oplus \dots \oplus a_{i-1} \oplus a_{i+1} \oplus \dots \oplus a_n) (a1ai1ai+1an)

在这些情况下,无论先手如何选择,剩下的异或和都会变成一个非零值。由于异或满足交换律和结合律,这些选择的结果最终都会导致剩余的异或和为一个非零值。因此,无论先手如何操作,最终的游戏状态都会变为一个不满足条件的状态。


②当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_n \neq 0 a1a2an=0 时,先手必胜:

在这种情况下,异或和不为零。证明先手必胜需要使用归纳法。对于 n = 1 n=1 n=1的情况,只有一个数,先手直接取走即可。

假设对于 n = k n=k n=k,当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a k ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_k \neq 0 a1a2ak=0 时,先手必胜。现在考虑 n = k + 1 n=k+1 n=k+1 的情况。

a 1 ⊕ a 2 ⊕ ⋯ ⊕ a k + 1 a_1 \oplus a_2 \oplus \dots \oplus a_{k+1} a1a2ak+1 分成两部分: x = a 1 ⊕ a 2 ⊕ ⋯ ⊕ a k x = a_1 \oplus a_2 \oplus \dots \oplus a_k x=a1a2ak a k + 1 a_{k+1} ak+1。根据归纳假设,当 x ≠ 0 x \neq 0 x=0 时,先手必胜。此时,先手可以执行以下操作:

  • 如果先手选择取走 a k + 1 a_{k+1} ak+1,那么剩下的异或和变为 x x x,根据归纳假设,先手必胜。
  • 如果先手选择取走 a i a_i ai 1 ≤ i ≤ k 1 \leq i \leq k 1ik),剩下的异或和变为 x ⊕ a i x \oplus a_i xai。由于 x ≠ 0 x \neq 0 x=0 x ⊕ a i x \oplus a_i xai 也不为零,那么根据归纳假设,先手也必胜。

因此,无论哪种情况,先手都有必胜策略。综上所述,当 a 1 ⊕ a 2 ⊕ ⋯ ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus \dots \oplus a_n \neq 0 a1a2an=0 时,先手必胜。


Nim游戏(典型例题)

题目描述:
给定 n n n 堆石子,两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 n n n

第二行包含 n n n 个数字,其中第 i i i 个数字表示第 i i i 堆石子的数量。

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n ≤ 1 0 5 , 1 ≤ 1≤n≤10^5,1≤ 1n105,1每堆石子数 ≤ 1 0 9 ≤10^9 109

输入样例:

2
2 3

输出样例:

Yes

代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;

int main()
{
	int n, res = 0;
	cin >> n;
	for (int i = 0; i < n; ++i)
	{
		int tmp;
		cin >> tmp;
		res ^= tmp;
	}
	if (res) cout << "Yes" << endl;
	else cout << "No" << endl;
	return 0;
}

台阶-Nim游戏(典型例题)

题目描述:
现在,有一个 n n n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i i i 级台阶上有 a i a_i ai 个石子( i ≥ 1 i≥1 i1)。

两位玩家轮流操作,每次操作可以从任意一级台阶上拿若干个石子放到下一级台阶中(不能不拿)。

已经拿到地面上的石子不能再拿,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 n n n

第二行包含 n n n 个整数,其中第 i i i 个整数表示第 i i i 级台阶上的石子数 a i a_i ai

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n ≤ 1 0 5 , 1 ≤ a i ≤ 1 0 9 1≤n≤10^5,1≤a_i≤10^9 1n105,1ai109

输入样例:

3
2 1 3

输出样例:

Yes

实现思路

在这里插入图片描述
模拟每次只能向下挪动至下一级台阶的行动,我的想法是将高于台阶1的堆分成多个堆,例如图中台阶5的堆,将这个堆分为5份石子数量相等的台阶1的堆,模拟需要至少5次才能将台阶5的堆拿至地面。

因此可以得到: 2 ⏟ 台阶 1 ⊕ 1 ⊕ 1 ⏟ 台阶 2 ⊕ 3 ⊕ 3 ⊕ 3 ⏟ 台阶 3 ⊕ 2 ⊕ 2 ⊕ 2 ⊕ 2 ⏟ 台阶 4 ⊕ 4 ⊕ 4 ⊕ 4 ⊕ 4 ⊕ 4 ⏟ 台阶 5 \underbrace{2}_{台阶1} \oplus \underbrace{1 \oplus 1}_{台阶2} \oplus \underbrace{3 \oplus 3 \oplus 3}_{台阶3} \oplus \underbrace{2 \oplus 2 \oplus 2 \oplus 2}_{台阶4} \oplus \underbrace{4 \oplus 4 \oplus 4 \oplus 4 \oplus 4}_{台阶5} 台阶1 2台阶2 11台阶3 333台阶4 2222台阶5 44444

由于异或(xor)的特性,相同的数异或等于0,便可以进行优化,当阶数为偶数时,异或结果必定为0,奇数时,异或结果直接就等于台阶上的石子数。

从而可以推导出结论:

  • 如果 奇数 阶台阶的石子个数 异或值不是零,则 先手必胜

  • 如果 奇数 阶台阶的石子个数 异或值是零, 则 先手必败


代码实现

未利用异或特性优化前:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;

int main()
{
	int n, res = 0;
	cin >> n;
	for (int i = 1; i <= n; ++i)
	{
		int tmp, cnt = i;
		cin >> tmp;
		while (cnt--)	res ^= tmp; // 由台阶数分堆
	}
	if (res) cout << "Yes" << endl;
	else cout << "No" << endl;
	return 0;
}

利用异或特性优化后:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;

int main()
{
	int n, res = 0;
	cin >> n;
	for (int i = 1; i <= n; ++i)
	{
		int tmp;
		cin >> tmp;
		if (i & 1) res ^= tmp; // 利用异或特性优化
	}
	if (res) cout << "Yes" << endl;
	else cout << "No" << endl;
	return 0;
}

Mex函数与SG函数

有向图游戏的概念:

  • 节点和边:有向图游戏由一组节点和连接节点的有向边组成。每个节点表示游戏的一个状态,而有向边表示从一个状态到另一个状态的合法转移。

  • 玩家轮流移动:在有向图游戏中,玩家轮流进行移动。每一步玩家可以从当前状态转移到某个后继状态,选择的后继状态必须遵循游戏的规则。

  • 游戏终止状态:每个有向图游戏都有终止状态,到达终止状态后游戏结束。终止状态可能是获胜状态或失败状态,这取决于游戏的规则。

  • SG 函数和 Mex 函数:SG 函数(Sprague-Grundy 函数)和 Mex 函数是解决有向图游戏的关键工具。SG 函数为每个节点赋予一个非负整数值,表示该节点的状态价值。Mex 函数返回集合中没有出现的最小非负整数。通过 SG 函数和 Mex 函数,可以计算出游戏的最佳策略。

  • 必胜策略(先手必胜)和必败策略(先手必败):在有向图游戏中,存在必胜策略和必败策略。如果一个玩家始终能够采取最佳策略,并且可以确保在有限步内获胜,那么该玩家有必胜策略。相反,如果玩家无论如何都无法避免失败,那么该玩家有必败策略。

  • Nim 游戏和其他变体:Nim 游戏是有向图游戏的一个著名例子,它涉及在堆中取石子。还有许多其他变体的有向图游戏,如拈游戏、Grundy’s Game 等。


Mex(Minimum Excluded value)函数,是一个常见的组合游戏和集合论中的概念。它通常用来解决一类博弈问题,其中两个玩家轮流从一个集合中取元素,每次取一个元素,并且不能重复取已经被取走的元素。当某一玩家无法继续操作时,该玩家输掉游戏。


Mex 函数的定义:对于一个给定的非负整数集合,它返回一个非负整数,表示在这个集合中,不属于集合最小非负整数

mex ( S ) = min ⁡ { x ∣ x ∈ N 0 , x ∉ S } \text{mex}(S) = \min \{ x \mid x \in \mathbb{N}_0, x \notin S \} mex(S)=min{xxN0,x/S}

例如:

S = { 0 , 1 , 2 , 4 } ⇒ m e x ( S ) = 3 S=\{0,1,2,4\} ⇒ mex(S)=3 S={0,1,2,4}mex(S)=3


m e x mex mex函数和 s g sg sg函数用于计算有向图游戏的答案,主要思路是:

  • m e x mex mex函数返回集合 S S S 中没有出现的最小非负整数。
  • s g sg sg函数定义为 s g ( n ) = m e x ( s g ( i 1 ) , s g ( i 2 ) . . . ) sg(n)=mex({sg(i_1),sg(i_2)...}) sg(n)=mex(sg(i1),sg(i2)...),其中 i 1 , i 2 . . . i_1,i_2... i1,i2... 是节点 n n n 的后继节点。
  • 对于图 G G G,定义 s g ( G ) = s g ( h e a d ) sg(G)=sg(head) sg(G)=sg(head),其中head是G的头节点。
  • 对于 n n n 个图 G 1 , G 2 , . . . G n G_1,G_2,...G_n G1,G2,...Gn,它们的 s g sg sg函数值的异或和就是这个有向图游戏的答案。

假设有 n n n 个独立局面,它们的 S G SG SG 值分别为 s g ( G 1 ) , s g ( G 2 ) , . . . , s g ( G n ) sg(G1), sg(G2), ..., sg(Gn) sg(G1),sg(G2),...,sg(Gn),其中 G i G_i Gi 表示第 i i i 个局面。那么整个组合游戏的 S G SG SG s g ( G ) sg(G) sg(G) 可以表示为这些局面 S G SG SG 值的异或和:

s g ( G ) = s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ . . . ⊕ s g ( G n ) sg(G) = sg(G_1) \oplus sg(G_2) \oplus ... \oplus sg(G_n) sg(G)=sg(G1)sg(G2)...sg(Gn)

例如:

以NIM游戏为例,数量为7个石子的一堆,每人抽取轮流只能抽取2或5个石子,不能不抽取,判断先手必胜还是先手必败。
在这里插入图片描述
从末尾开始计算,可以得到 s g ( h e a d ) = 0 sg(head) = 0 sg(head)=0,由于此时只有一堆,即只存在一个有向图,所以 s g ( h e a d ) = 0 sg(head) = 0 sg(head)=0 得到结果先手必败。

对多个有向图的情况(例如多个堆的情况),将每个有向图的sg(head)异或到一起,再根据先手必胜必败的条件,得出对应的结论。


G 1 , G 2 , G 3 , … , G n G_1,G_2,G_3,\dots,G_n G1,G2,G3,,Gn n n n 个有向图,结论为:

先手必败
s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ s g ( G 3 ) ⊕ ⋯ ⊕ s g ( G n ) = 0 sg(G_1) \oplus sg(G_2) \oplus sg(G_3) \oplus \dots \oplus sg(G_n) = 0 sg(G1)sg(G2)sg(G3)sg(Gn)=0
先手必胜
s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ s g ( G 3 ) ⊕ ⋯ ⊕ s g ( G n ) ≠ 0 sg(G_1) \oplus sg(G_2) \oplus sg(G_3) \oplus \dots \oplus sg(G_n) \neq 0 sg(G1)sg(G2)sg(G3)sg(Gn)=0


集合-Nim游戏(典型例题)

题目描述:
给定 n n n 堆石子以及一个由 k k k 个不同正整数构成的数字集合 S S S

现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S S S,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 k k k,表示数字集合 S S S 中数字的个数。

第二行包含 k k k 个整数,其中第 i i i 个整数表示数字集合 S S S 中的第 i i i 个数 s i s_i si

第三行包含整数 n n n

第四行包含 n n n 个整数,其中第 i i i 个整数表示第 i i i 堆石子的数量 h i h_i hi

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n , k ≤ 100 , 1 ≤ s i , h i ≤ 10000 1≤n,k≤100,1≤s_i,h_i≤10000 1n,k100,1si,hi10000

输入样例:

2
2 3

输出样例:

Yes

代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstring>
#include<unordered_set>
using namespace std;

const int N = 110, M = 10010;
int a[N], f[M], k, n;

int sg(int x)
{
	if (~f[x]) return f[x]; // 记忆化搜索:保证每种状态只会被算一次
	unordered_set<int> s; // 用哈希表存储当前节点的集合所存有的非负数的元素
	for (int i = 0; i < k; ++i)
	{
		int num = a[i];
		if (x >= num) s.insert(sg(x - num)); // 将新的状态加进来
	}
	for (int i = 0;; i++) if (!s.count(i)) return f[x] = i; // 找出不存在集合当中的最小值并返回
}
int main()
{
	int res = 0;
	memset(f, -1, sizeof f);
	cin >> k;
	for (int i = 0; i < k; ++i) cin >> a[i];
	cin >> n;
	for (int i = 0; i < n; ++i)
	{
		int x;
		cin >> x;
		res ^= sg(x); // 求出每堆石子的SG值将其异或
	}
	if (res) cout << "Yes" << endl;
	else cout << "No" << endl;
	return 0;
}

拆分-Nim游戏(典型例题)

题目描述:
给定 n n n 堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆 规模更小 的石子(新堆规模可以为 0 0 0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式:
第一行包含整数 n n n

第二行包含 n n n 个整数,其中第 i i i 个整数表示第 i i i 堆石子的数量 a i a_i ai

输出格式:
如果先手方必胜,则输出 Yes

否则,输出 No

数据范围:
1 ≤ n , a i ≤ 100 1≤n,a_i≤100 1n,ai100

输入样例:

2
2 3

输出样例:

Yes

实现思路

取走其中的一堆石子,然后放入两堆 规模更小 的石子,相当于将一个局面拆分成了两个局面,由SG函数理论:多个独立局面的SG值,等于这些局面SG值的 异或和

s g ( G ) = s g ( G 1 ) ⊕ s g ( G 2 ) ⊕ . . . ⊕ s g ( G n ) sg(G) = sg(G_1) \oplus sg(G_2) \oplus ... \oplus sg(G_n) sg(G)=sg(G1)sg(G2)...sg(Gn)


代码实现

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstring>
#include<unordered_set>
using namespace std;

const int N = 110, M = 10010;
int f[N], n;

int sg(int x)
{
	if (~f[x]) return f[x];
	unordered_set<int> s;
	for (int i = 0; i < x; ++i)
	{
		for (int j = 0; j <= i; ++j)
			s.insert(sg(i) ^ sg(j));
	}
	for (int i = 0;; i++) if (!s.count(i)) return f[x] = i;
}
int main()
{
	memset(f, -1, sizeof f);
	cin >> n;
	int res = 0;
	while (n--)
	{
		int x;
		cin >> x;
		res ^= sg(x);
	}
	if (res) cout << "Yes" << endl;
	else cout << "No" << endl;
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值