数据结构系列 二叉树的遍历(链表存储)

https://www.cnblogs.com/skywang12345/category/508186.html 备忘

https://blog.csdn.net/lin20044140410/article/details/103889660 二叉树顺序存储

 

二叉树的特点:

1,每个结点最多有两棵子树,可以没有或者只有一棵,所以二叉树中不存在度大于2的结点。

2,左子树,右子树是有顺序的,次序不能任意颠倒,所以如果某个结点只有一棵子树,要区分它是左子树还是右子树。

 

3,如果一棵二叉树只有左子树或者只有右子树,就叫斜二叉树,这类二叉树跟线性表结构类似。

4,如果二叉树中的所有分支结点都有左子树和右子树,并且所有叶子结点都在同一层上,就叫满二叉树。

5,满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。当对一个二叉树的所有结点按层序编号,如果所有的编号都是连续的,它就是一个完全二叉树。

如上图树1,是一棵完全二叉树,但是树2不是完全二叉树,因为没有5这个结点,导致它编号不连续了。

 

二叉树的遍历(前,后,中都是针对访问根结点来说的,即是对根结点的访问时机在“前”,“中”,“后”)

1,前序遍历

先访问根结点,然后前序遍历左子树,最后前序遍历右子树。

2,中序遍历

先中序遍历左子树,然后访问根结点,最后中序遍历右子树。

3,后序遍历

先后序遍历左子树,然后中序遍历右子树,最后访问根结点。

#include "iostream"
#include "cstring"
#include "cstdlib"

using namespace std;
//using std::cout;
//using std::endl;

typedef int Status;//表示函数执行状态
#define OK 1
#define ERROR 0

typedef char TreeElemType; //数据类型
#define NODEMAX 25
char nodes[NODEMAX];//存储二叉树每个结点的值
int pos =0;
const char *nodeValues = "ABCD#QW#ASD##LK##PO####UP";

//每个结点的结构类型
typedef struct BinaryTreeNode{
    TreeElemType data;
    //左右结点指针
    struct BinaryTreeNode *lChild, *rChild;
} BTNode, *BiTree;

//生成构造二叉树的每个结点的值
Status nodesGenerate(const char *nodeValue) {
    if (nodeValue != NULL) {
	for (int i=0; i<strlen(nodeValue) ;i++){
	    nodes[i] = *(nodeValue+i);
	}
	return OK;
    }else {
	return ERROR;
    }
}

//访问指定结点
Status visit(BiTree biTNode) {
    if (biTNode != NULL) {
        cout << "value=" <<biTNode->data << endl;
    }else {
	cout << "biNode is null !";
    }
    return OK;
}

//初始化二叉树
Status initBiTree(BiTree *biTree) {
    *biTree = NULL;
    return OK;
}

//销毁二叉树
void destoryBiTree(BiTree *biTree) {
    if(*biTree){
	if((*biTree)->lChild) {
	    destoryBiTree(&((*biTree)->lChild));
	}
	if((*biTree)->rChild) {
	    destoryBiTree(&((*biTree)->rChild));
	}
	free(*biTree);
	*biTree = NULL;
    }
}

//构造二叉树,以前序的方式
void createBiTree(BiTree *biTree) {
    TreeElemType elem;
    //#号表示结点为null,即是没有这个子节点
    if(pos >=strlen(nodeValues)){
	return;//构造结束
    }else{
	elem = *(nodeValues+pos);
	pos++;
    } 
	
    if(elem == '#'){
	*biTree = NULL;
    }else {
	*biTree = (BiTree)malloc(sizeof(BTNode));
	if(!*biTree){
	    exit(EOVERFLOW);
	}
	memset(*biTree, 0, sizeof(BTNode));
	(*biTree)->data = elem; //构造根结点
	createBiTree(&((*biTree)->lChild));//构造左子树
	createBiTree(&((*biTree)->rChild));//构造右子树
    }
}

//前序遍历二叉树
void preOrderTraversal(BiTree biTree){
    if(biTree == NULL){
	//cout << "biTree is null " << endl;
	return ;
    }else {
	visit(biTree);
	preOrderTraversal(biTree->lChild);
	preOrderTraversal(biTree->rChild);
    }
}


//中序遍历二叉树
void inOrderTraversal(BiTree biTree){
    if(biTree == NULL){
	//cout << "biTree is null " << endl;
	return ;
    }else {
	inOrderTraversal(biTree->lChild);
	visit(biTree);
	inOrderTraversal(biTree->rChild);
    }
}

//后序遍历二叉树
void postOrderTraversal(BiTree biTree){
    if(biTree == NULL){
	//cout << "biTree is null " << endl;
	return ;
    }else {
	postOrderTraversal(biTree->lChild);
	postOrderTraversal(biTree->rChild);
	visit(biTree);
    }
}

int main(){
    BiTree bT;
    //const char *chars = "ABCD#QW#ASD##LK##PO####U~";
    cout << "Binary tree exercise!:" << strlen(nodeValues)<<endl;
    //nodesGenerate(chars);
    createBiTree(&bT);
    cout << "pre order:" <<endl;
    preOrderTraversal(bT);
    cout << "inOrder:" <<endl;
    inOrderTraversal(bT);
    cout << "post order:" <<endl;
    postOrderTraversal(bT);
    destoryBiTree(&bT);
    return 0;
}

运行结果:

$ g++ -g BinaryTree.cpp -o BiTree
$ ./BiTree
Binary tree exercise!:25
pre order:
value=A
value=B
value=C
value=D
value=Q
value=W
value=A
value=S
value=D
value=L
value=K
value=P
value=O
value=U
value=P
inOrder:
value=D
value=W
value=D
value=S
value=K
value=L
value=O
value=P
value=A
value=Q
value=P
value=U
value=C
value=B
value=A
post order:
value=D
value=K
value=O
value=P
value=L
value=S
value=A
value=W
value=P
value=U
value=Q
value=D
value=C
value=B
value=A

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值