深度学习5:TensorFlow MNIST入门示例

参考:
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html

今天按照官方教程来搭建一个MNIST的网络,同时学习一下构建一个TensorFlow模型的基本步骤。

1. 单层网络

MNIST是一个入门级的计算机视觉数据集,包含各种手写数字图片和对应的标签。在python中加载MNIST数据集十分容易,只需要两行代码:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

在教程中给出的导入MNIST代码如下,应该是版本问题,我使用时会报错。

import tensorflow.examples.tutorials.mnist.input_data

教程中还有一处报错,print没有加括号,增加括号即可。

整体代码如下:

"""
学习构建一个TensorFlow模型的基本步骤,并将通过这些步骤为MNIST构建一个深度卷积神经网络。
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#加载mnist数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

#为了不在建立模型的时候反复做初始化操作,我们定义两个函数用于初始化。
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

#卷积和池化
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

#输入变量x为一个占位符,表示mnist图像,每一张图展开成784维的向量
x = tf.placeholder(tf.float32, shape=[None, 784])

#W和b为权重和偏置变量
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

#模型y=x*W+b,计算每个分类的softmax概率值
y = tf.nn.softmax(tf.matmul(x,W) + b)

#为了计算交叉熵,我们首先需要添加一个新的占位符用于输入正确值。
#y_是一个2维张量,其中每一行为一个10维的one-hot向量,用于代表对应某一MNIST图片的类别。
y_ = tf.placeholder(tf.float32, shape=[None, 10])

#为训练过程指定最小化误差用的损失函数,这里损失函数是目标类别和预测类别之间的交叉熵
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

#选择的优化算法来不断更新参数,这里使用最速下降法让交叉熵下降,步长为0.01。
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

#初始化创建的变量
init = tf.initialize_all_variables()

#在Session中启动模型
sess = tf.InteractiveSession()

#为初始值指定具体值(本例当中是全为零),并将其分配给每个变量,可以一次性为所有变量完成此操作。
sess.run(tf.initialize_all_variables())

#训练模型,每一步迭代,加载50个训练样本,然后执行一次train_step,并通过feed_dict将x 和 y_张量占位符用训练训练数据替代。
for i in range(1000):
  batch = mnist.train.next_batch(50)
  train_step.run(feed_dict={x: batch[0], y_: batch[1]})

#检测预测是否与真实标签匹配
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

#计算我们分类的准确率均值
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

#计算出在测试数据上的准确率,大概是91%。
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

单层网络的训练准确度达到91%,下面会通过多层网络来对其进行优化。

2. 多层卷积网络

本人是小白,对于机器学习、神经网络都是从零开始,因此对用到的一些概念进行简单了解:ReLU神经元、池化Pooling、Dropout,见http://blog.csdn.net/lin453701006/article/details/79151676
5.ReLU神经元,6.池化Pooling,7.Dropout。

下面言归正传,使用MNIST多层卷积网络,代码如下:

"""
多层卷积网络MNIST
"""

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#加载mnist数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()  

#为了不在建立模型的时候反复做初始化操作,我们定义两个函数用于初始化。
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

#卷积和池化
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

#输入变量x为一个占位符,表示mnist图像,每一张图展开成784维的向量
x = tf.placeholder(tf.float32, shape=[None, 784])

#为了计算交叉熵,我们首先需要添加一个新的占位符用于输入正确值。
#y_是一个2维张量,其中每一行为一个10维的one-hot向量,用于代表对应某一MNIST图片的类别。
y_ = tf.placeholder(tf.float32, shape=[None, 10])

#%%第一层卷积
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

#把x变成一个4d向量
x_image = tf.reshape(x, [-1,28,28,1])

#把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

#%%第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#%%密集连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

#%%Dropout
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#%%输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#%%训练和评估模型
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g" %(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" %accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

最终测试结果:

test accuracy 0.9926
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值