from typing import List
'''
「416.分割等和子集」
给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
「示例」
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
「动态规划:0-1背包问题」
状态变量:dp[j] 是否有总和为j的子集,dp是一个一维的布尔数组
转移方程:
如果不取nums[i],则dp[j] = dp[j]
如果取nums[i],则dp[j] = dp[j - nums[i]] (前提:j >= nums[i])
初始条件:dp[*]初始化为False;dp[0] = True
'''
class Solution:
def canPartition(self, nums: List[int]) -> bool:
sumAll = sum(nums)
if sumAll % 2:
return False
target = sumAll // 2
dp = [False] * (target + 1)
dp[0] = True
for i in range(len(nums)):
for j in range(target, nums[i] - 1, -1):
if j >= nums[i]:
dp[j] = dp[j] or dp[j - nums[i]] #只要满足两个条件的任何一个dp[j]都是TRUE
return dp[-1]
nums = [1,5,11,5]
ll = Solution()
a = ll.canPartition(nums)
2021-05-24
最新推荐文章于 2023-04-19 18:57:08 发布
这篇博客介绍了如何用动态规划解决一个经典的计算机科学问题——分割等和子集。给定一个包含正整数的数组,目标是判断是否能将其分割成两个子集,使它们的元素和相等。博主通过示例解释了动态规划的状态转移方程,并给出了具体的Python代码实现。动态规划方法基于0-1背包问题,通过遍历数组和状态数组来确定是否存在和为目标的一半的子集。
摘要由CSDN通过智能技术生成