2021-05-24

这篇博客介绍了如何用动态规划解决一个经典的计算机科学问题——分割等和子集。给定一个包含正整数的数组,目标是判断是否能将其分割成两个子集,使它们的元素和相等。博主通过示例解释了动态规划的状态转移方程,并给出了具体的Python代码实现。动态规划方法基于0-1背包问题,通过遍历数组和状态数组来确定是否存在和为目标的一半的子集。
摘要由CSDN通过智能技术生成
from typing import List

'''
「416.分割等和子集」
给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

「示例」
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

「动态规划:0-1背包问题」
状态变量:dp[j] 是否有总和为j的子集,dp是一个一维的布尔数组
转移方程:
如果不取nums[i],则dp[j] = dp[j]
如果取nums[i],则dp[j] = dp[j - nums[i]] (前提:j >= nums[i])
初始条件:dp[*]初始化为False;dp[0] = True
'''

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        sumAll = sum(nums)
        if sumAll % 2:
            return False
        target = sumAll // 2

        dp = [False] * (target + 1)
        dp[0] = True

        for i in range(len(nums)):
            for j in range(target, nums[i] - 1, -1):
                if j >= nums[i]:
                    dp[j] = dp[j] or dp[j - nums[i]] #只要满足两个条件的任何一个dp[j]都是TRUE
        return dp[-1]


nums = [1,5,11,5]
ll = Solution()
a = ll.canPartition(nums)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十子木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值