SVM中核函数的理解

本文是关于支持向量机(SVM)中核函数的学习笔记,旨在澄清JULY大神文章中关于核函数解释的混淆点。核函数在解决低维线性不可分数据映射到高维线性可分问题时起关键作用。通过举例说明,解释如何使用核函数以避免高维空间的复杂计算,帮助实现两类数据的有效区分。
摘要由CSDN通过智能技术生成

这篇文章是阅读JULY大神支持向量机通俗导论(理解SVM的三层境界)的一点学习笔记。
在JULY大神原文中,对核函数解释的时候,点和点的坐标表示混用了”X”这个字母,从而为理解带来了不便。于是自己经过一些验算和重写之后,有了这一学习笔记。


我们知道,核函数的提出是在解决SVM在将低维线性不可分数据映射成高位线性可分时提出来的,于是我们直接从此开始。
对于下图(来源于导论原文)的两类数据
这里写图片描述
我们可以用一个圆将它们区分开,这个二维上的点坐标为 (p,q) 于是,圆我们可以用一个二次方程表示:

a1p+a2p2+a3q+a4q2+a5pq+a6=0

根据这一方程的形式,我们构造一个五维空间,其上点与二维平面的映射关系为
(Z1,Z2,Z3,Z4,Z5)=(p,p2,q,q2,pq)(1.1)

于是原二次方程即变为:
i=15aiZi+a6=0

αZ+a6=0

即一个超平面方程,通过SVM知识我们知道,这个超平面正是在五维空间上线性划分两类数据的超平面。
那么是否对于式子,
f(x)=i=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值