【机器学习】SVM和核函数

上了吴恩达教授在Coursera上的课程之后,在网上找到了他在斯坦福课程的资料CS229 。下面会结合这两个课程的资料,整理一篇笔记。

背景

从之前的逻辑回归的模型中,我们可以看到,如果一个样本越远离决策边界(Decision Boundary),那么我们就越能确保这个样本被正确分类。所以一个比较好的决策边界是尽量能让所有样本到决策边界的距离最大。从下图中可以看到,如果margin越大,我们对样本的正确分类就越有信心。
在这里插入图片描述
SVM就是一种能帮你得到margin最大的决策边界的算法。

SVM数学推导

在接下来的推导中,定义 y ( i ) ∈ { − 1 , 1 } y^{(i)}\in\{-1,1\} y(i){ 1,1},而不是 y ∈ { 0 , 1 } y\in\{0,1\} y{ 0,1}。首先定义函数间隔(functional margin) 为:
γ ^ ( i ) = y ( i ) ( w T x ( i ) + b ) \hat{\gamma}^{(i)}=y^{(i)}(w^{T}x^{(i)}+b) γ^(i)=y(i)(wTx(i)+b)

如果 y ( i ) = 1 y^{(i)}=1 y(i)=1,那么我们希望 w T x ( i ) + b w^{T}x^{(i)}+b wTx(i)+b能是一个很大的正数,相反,如果 y ( i ) = − 1 y^{(i)}=-1 y(i)=1,那么 w T x ( i ) + b w^{T}x^{(i)}+b wTx(i)+b需要是一个很小的负数,这样就能使得样本离决策边界越远,分类效果越好。因此,得到的functional margin γ ^ \hat{\gamma} γ^越大,分类效果越好。
对于一个样本集 S = { ( x ( i ) , y ( i ) ) ; i = 1 , . . . n } S=\{(x^{(i)},y^{(i)});i=1,...n\} S={ (x(i),y(i));i=1,...n},定义:
γ ^ = min ⁡ i = 1 , . . . n γ ^ ( i ) \hat{\gamma}=\min_{i=1,...n}\hat{\gamma}^{(i)} γ^=i=1,...nminγ^(i)

那么接下来讨论 几何间隔(geometric margin)
在这里插入图片描述
从上图中可以看到,向量 w w w一定是与超平面垂直的,我们取超平面上的任意两点 x 1 , x 2 x_1,x_2 x1,x2 x 1 , x 2 x_1,x_2 x1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值