相关与卷积

知识点

参见《数字信号处理_胡广书》

在这里插入图片描述

相关的性质

  • 共轭对称性
  • 自相关函数在原点的值等于信号能量
  • 相关函数的面积等于信号面积模的平方
  • 复信号s(t)自相关函数的傅里叶变换是正实函数;如果二个信号在频域上具有相同的能谱,在时域上具有不同的波形,但是这二个信号的相关函数却相同

相关与卷积的区别

  • 相关运算中被积函数没有时间反褶的过程,而卷积运算中有
  • 相关函数不满足交换,而卷积可以
  • 相关和卷积在计算方式上有相似性,但是在二者在概念上没有关联

代码示例

clc;clear all;close all;

x = linspace(1,10,10);
y = linspace(2,11,10);

conv_result      = conv(x,y)        %卷积满足结合律,故而不再交换运算

xcorr_result_0   = xcorr(x,y)
xcorr_result_1   = xcorr(y,x)

conv_xy_deal_0   = conv(fliplr(x),y)
conv_xy_deal_1   = conv(x,fliplr(y))

在这里插入图片描述

博文链接

“相关”与“卷积”的理解和使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值