
机器学习
文章平均质量分 91
lindaicoding
这个作者很懒,什么都没留下…
展开
-
深度学习:神经网络基础(一)神经网络构建(代码演示,用神经网络表示线性回归和逻辑回归模型)
现在提到深度学习(deep learning)连非计算机专业的人都听说过,尤其是最近“人机大战”更是掀起了人们对深度学习的极大关注。而深度学习则源于神经网络的研究。神经网络其实是一门相对古老的算法,它最初产生的目的是制造能够模拟这个星球最复杂的东西“人脑”的机器。本文讲述神将网络表示线性回归和逻辑回归两个模型一、神经网络的表示1)用神经网络表示线性回归模型为了更清楚的学习神经网络怎样表示,我们将用神经网络表示一个线性回归模型。我们先看一下线性回归模型表示方法:a0 代表斜率;原创 2021-08-24 12:23:11 · 2150 阅读 · 0 评论 -
机器学习中Random Forest 随机森林小结(5步算法,11个优缺点,例子演示解决Kaggle高频竞赛题泰坦尼克沉船)
随机森林属于 集成学习 中的 Bagging方法。由多个随机树构成,然后通过投票共同学习特征。因为生长很深的树容易学习到高度不规则的模式,即overfit,在训练集上具有低bias和高variance的特点。随机森林是平均多个深决策树以降低variance的一种方法,其中,决策树是在一个数据集上的不同子集进行训练的,在最终的模型中通常会大大提高性能。这有些像解决一道预测何时世界末日的难题,你给一个大学生解决,又给了一个在家里自学的人解决。两个人的解法很大概率是不一样的,你提取两个人解法的优势合起来就原创 2021-08-04 17:12:47 · 5844 阅读 · 0 评论 -
Decision Tree 是机器学习的门槛?决策树原理,6个优缺点,3个算法,ID3算法自实现
一.scikit-learn中两个决策树算法 scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。两者的参数定义几乎完全相同,但是意义不全相同。下面就对DecisionTreeClassifier和DecisionTreeRegressor的一个小结。一、Decision Tree Classificat.原创 2021-08-11 11:41:02 · 1447 阅读 · 0 评论