pd.get_dummies()用法

在数据的预处理过程中,我们需要将一个特征变量变为计算机能读懂的特征距离。

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)

详细参数:

prefix:str, list of str, 或 dict of str, 默认为 None
用于追加DataFrame列名称的字符串。

prefix_sep:str, 默认为 ‘_’
如果附加前缀,则使用分隔符/分隔符。或者像这样传递列表或字典prefix。

dummy_na:bool, 默认为 False
如果忽略False NaN。

columns:list-like, 默认为 None
要编码的DataFrame中的列名。如果columns为None,则所有具有的列object或者categorydtype将被转换。

sparse:bool, 默认为 False
dummy-encoded列是否应由a支持SparseArray(True)或常规NumPy数组(False)。

drop_first:bool, 默认为 False
是否通过删除第一个级别从k个分类级别中获取k-1个虚拟对象。

用法举例:

data = pd.DataFrame({"学号":[1,2,3,4],
                    "录取":["清华","北大","清华","蓝翔"],
                    "学历":["本科","本科","本科","专科"]})
pd.get_dummies(data)

 

data = pd.DataFrame({"学号":[1,2,3,4],
                    "录取":["清华","北大","清华","蓝翔"],
                    "学历":["本科","本科","本科","专科"]})
pd.get_dummies(data,prefix='Hello')

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值