载波为半波三角波的单相三阶SPWM逆变器——谐波分析

电路模型介绍

电路工作原理:
电路工作原理
电路图:
电路图
半波三角波的数学表示:
u c = { − ( w c t − 2 π k ) U c π + U c 2 π k ≤ w c t ≤ 2 π k + π ( w c t − 2 π k − π ) U c π 2 π k + π ≤ w c t ≤ 2 π k + 2 π k = 0 , 1 , 2 , 3 , . . . , N 2 ( 在 半 个 周 期 内 ) ( 1 ) u_c=\begin{cases} -(w_ct-2\pi k)\frac{U_c}{\pi}+U_c & 2\pi k\le w_ct\le 2\pi k+\pi \\ (w_ct-2\pi k-\pi)\frac{U_c}{\pi} & 2\pi k+\pi \le w_ct\le 2\pi k+2\pi \\ \end{cases} k=0,1,2,3,...,\frac{N}{2} (在半个周期内)(1) uc={(wct2πk)πUc+Uc(wct2πkπ)πUc2πkwct2πk+π2πk+πwct2πk+2πk=0,1,2,3,...,2N(1
正弦调制波的方程式为:
u s = U s s i n ( w s t − φ ) u_s=U_ssin(w_st-\varphi) us=Ussin(wstφ)
半波三角波的分段表示
令调制度 U s U c = M ≤ 1 \frac{U_s}{U_c}=M \le1 UcUs=M1,载波比 w c w s ≫ 1 \frac{w_c}{w_s}\gg1 wswc1
三阶SPWM波的采样点是正弦波与三角波的交点,在交点上, u c = u s u_c=u_s uc=us,
在采样点a: U a s i n ( w s t − φ ) = − ( w c t − 2 π k ) U c π + U c U_asin(w_st-\varphi)=-(w_ct-2\pi k)\frac{U_c}{\pi}+U_c Uasin(wstφ)=(wct2πk)πUc+Uc
w c t = X , w s t − φ = Y w_ct=X,w_st-\varphi=Y wct=X,wstφ=Y,则
X = 2 π k + π − π M s i n Y X=2\pi k+\pi-\pi MsinY X=2πk+ππMsinY
在采样点 b : X = 2 π k + π + π M s i n Y b:X=2\pi k+\pi +\pi MsinY bX=2πk+π+πMsinY
按照生成输出脉冲波的方式,可以得到输出波形的分段表达式为:
解析
u L = { 0 X < 2 π k + π − π M s i n Y 或 X ≥ 2 π k + π + π M s i n Y + E X ≥ 2 π k + π − π M s i n Y 或 X < 2 π k + π + π M s i n Y u_L=\begin{cases} 0 & X<2\pi k+\pi-\pi MsinY 或 X \ge 2\pi k+\pi+\pi MsinY \\ +E & X \ge 2\pi k+\pi-\pi MsinY 或 X< 2\pi k+\pi+\pi MsinY \end{cases} uL={0+EX<2πk+ππMsinYX2πk+π+πMsinYX2πk+ππMsinYX<2πk+π+πMsinY
Y = w s t − φ , X = w c t , w c w s = N , U s U c = M Y=w_st-\varphi,X=w_ct,\frac{w_c}{w_s}=N,\frac{U_s}{U_c}=M Y=wstφ,X=wct,wswc=N,UcUs=M
谐波分析:由于图中的波形所示的三阶SPWM波形对称于原点,故 u L u_L uL是奇函数,因此它的傅里叶级数表达式将只包含正弦项,不包含恒定分量与余弦项,又由于 u L u_L uL波形是镜像对称的(分析傅里叶可以看一半了),因此它只包函正弦项中的奇数次谐波:
A m n + j B m n = E π 2 ∫ 0 π ∫ 2 π k + π − π M s i n Y 2 π k + π + π M s i n Y e j ( m X + n Y ) d X d Y   ( 1 ) A_{mn}+jB_{mn}=\frac{E}{\pi ^2} \int _{0}^{\pi}\int_{2\pi k+\pi-\pi MsinY}^{2\pi k+\pi+\pi MsinY}e^{j(mX+nY)}dXdY (1) Amn+jBmn=π2E0π2πk+ππMsinY2πk+π+πMsinYej(mX+nY)dXdY (1)
化简关系为: A m n + j B m n = E j m π 2 e j m π [ ∫ 0 π e j ( m M s i n Y ) * e j n Y d Y − ∫ 0 π e − j ( m M s i n Y ) * e j n Y d Y ] A_{mn}+jB_{mn}=\frac{E}{jm\pi ^2}e^{jm\pi}[\int_{0}^{\pi}e^{j(mMsinY)}*e^{jnY}dY-\int_{0}^{\pi}e^{-j(mMsinY)}*e^{jnY}dY] Amn+jBmn=jmπ2Eejmπ[0πej(mMsinY)ejnYdY0πej(mMsinY)ejnYdY]
由bessel理论可以有关系:
1 π ∫ 0 π e j ( m M s i n Y ) * e j n Y d Y = J n ( m M π ) e j n π − 1 2 1 π ∫ 0 π e − j ( m M s i n Y ) * e j n Y d Y = J n ( m M π ) 1 − e j n π 2 \frac{1}{\pi}\int_{0}^{\pi}e^{j(mMsinY)}*e^{jnY}dY=J_n(mM\pi)\frac{e^{jn\pi}-1}{2} \\ \frac{1}{\pi}\int_{0}^{\pi}e^{-j(mMsinY)}*e^{jnY}dY=J_n(mM\pi)\frac{1-e^{jn\pi}}{2} π10πej(mMsinY)ejnYdY=Jn(mMπ)2ejnπ1π10πej(mMsinY)ejnYdY=Jn(mMπ)21ejnπ
所以将关系代入化简得到输出的谐波表达式为:
A m n + j B m n = j E m π J n ( m M π ) e j m π [ 1 − e j n π ] ( 2 ) A_{mn}+jB_{mn}=\frac{jE}{m\pi }J_n(mM\pi)e^{jm\pi}[1-e^{jn\pi}] (2) Amn+jBmn=mπjEJn(mMπ)ejmπ[1ejnπ](2)
当n为0或偶数时, 1 − e j n π = 0 1-e^{jn\pi}=0 1ejnπ=0,所以 A m n + j B m n = 0 A_{mn}+jB_{mn}=0 Amn+jBmn=0
当n为奇数时, 1 − e j n π = 2 1-e^{jn\pi}=2 1ejnπ=2,所以 A m n + j B m n = j 2 E m π J n ( m M π ) [ c o s ( m π ) + j s i n ( m π ) ] A_{mn}+jB_{mn}=\frac{j2E}{m\pi }J_n(mM\pi)[cos(m\pi)+jsin(m\pi)] Amn+jBmn=mπj2EJn(mMπ)[cos(mπ)+jsin(mπ)]
因为 s i n ( m π ) = 0 sin(m\pi)=0 sin(mπ)=0,所以 A m n = 0 A_{mn}=0 Amn=0,
B m n = 2 E m π J n ( m M π ) c o s ( m π ) B_{mn}=\frac{2E}{m\pi}J_n(mM\pi)cos(m\pi) Bmn=mπ2EJn(mMπ)cos(mπ)
m = 0 m=0 m=0时, A 0 n + j B 0 n = 1 2 π 2 ∫ − π + π ∫ − π + π u L e j n Y d X d Y A_{0n}+jB_{0n}=\frac{1}{2\pi^2}\int_{-\pi}^{+\pi}\int_{-\pi}^{+\pi}u_Le^{jnY}dXdY A0n+jB0n=2π21π+ππ+πuLejnYdXdY
因为 u L u_L uL为奇函数,故得:
B 0 n = 1 π 2 ∫ 0 π ∫ − π π u L s i n n Y d X d Y = E π 2 ∫ 0 π ∫ 2 π k + π − π M s i n Y 2 π k + π + π M s i n Y s i n n Y d X d Y B_{0n}=\frac{1}{\pi^2}\int_{0}^{\pi}\int_{-\pi}^{\pi}u_LsinnYdXdY\\ =\frac{E}{\pi^2}\int_{0}^{\pi}\int_{2\pi k+\pi-\pi MsinY}^{2\pi k+\pi+\pi MsinY}sinnYdXdY B0n=π210πππuLsinnYdXdY=π2E0π2πk+ππMsinY2πk+π+πMsinYsinnYdXdY
求得当 n = 1 n=1 n=1时, B 0 n = M E B_{0n}=ME B0n=ME,当 n ≠ 1 n\ne1 n=1时, B 0 n = 0 B_{0n}=0 B0n=0;
故可以得到三阶SPWM波的傅里叶级数表达式,为
u L = M E s i n ( w s − φ ) + 2 E π ∑ m = 1 , 2 , 3... ∝ ∑ n = ± 1 , ± 3... ∝ c o s ( m π ) J n ( m M π ) m s i n [ ( m N + n ) w s t − n φ ] u_L=MEsin(w_s-\varphi)+\frac{2E}{\pi}\sum_{m=1,2,3...}^{\propto}\sum_{n=\pm1,\pm3...}^{\propto}cos(m\pi)\frac{J_n(mM\pi)}{m}sin[(mN+n)w_st-n\varphi] uL=MEsin(wsφ)+π2Em=1,2,3...n=±1,±3...cos(mπ)mJn(mMπ)sin[(mN+n)wstnφ]
由此可以求出 M = 0.5 或 1 M=0.5或1 M=0.51时的通用频谱数值及相应的频谱分布如下:
频谱分布
频谱

结论:比较三阶和二阶SPWM的频谱图,可以知道三阶SPWM波形的谐波含量比载波采用全波三角波的二阶SPWM波形的谐波含量要小的多。当二阶SPWM波的载波比为三阶SPWM波的载波比的一半时,他们的频谱有很有趣的规律,即二阶SPWM波频谱中的m为2,4,6……的载波谐波的上下边频成分,分别与三阶SPWM波中m为1,2,3……相应成分完全一致;而二阶SPWM波中m为1,3,5……的载波、载波谐波及上下边频成分在三阶SPWM波中为零。另外还可以看出,当m=1时,对同样的M值,三阶SPWM波的谐波幅值,明显地比二阶SPWM波的幅值小,因此,三阶SPWM波具有更好的消除谐波的作用。

三阶SPWM波形产生方法:“相位参差”的方法:用两个相位相反而幅值相同的正弦调制波,与一个载波三角波进行比较,得到两个二阶SPWM波,使这两个二阶SPWM波相减,就得到了三阶SPWM波。或用两个相位相反而幅值相等的三角波与一个正弦波相比较,可以直接得到二阶SPWM波,其波形如下图所示,从波形图中可以看出,三阶SPWM波的脉冲数比二阶SPWM波增加了一倍,就好像是将三角波进行全波整流后再由正弦波进行调制的波形。
波形调制
由二阶的表达式,可以知道: E ′ = E 2 E^{'}=\frac{E}{2} E=2E
二阶SPWM
三阶的输出变化
在这里插入图片描述
结论:可以看出采用“相位参差”的方式得到的三阶SPWM波,与直接采用半波三角波产生的三阶SPWM波的傅里叶分析的谐波表达式效果是一样的;从这里可以理解出相位相反的两阶SPWM波相减得到的一个 w c = 2 w c ′ w_c=2w_c^{'} wc=2wc,亦即 N = 2 N ′ N=2N^{'} N=2N(可以看出N是偶数),的三阶SPWM波,而两个二阶SPWM波中的载波、载波的奇次谐波,以及他们的上下边频都被消除掉了。
采用这种方法的控制电路为:
控制拓扑
如果用减法器进行输出,则是用控制信号进行相位参差;如果用高速比较器输出,则是用逆变器主电路的两个臂进行相位参差;
为了采用相位参差法得到三阶SPWM波,N必须取偶数(因为 N = 2 N ′ N=2N^{'} N=2N, N ′ N{'} N是整数,故N为偶数)。

图片参考来源:刘凤君的正弦波逆变器一书

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值