superset vs Tableau

superset

the only thing i need to know is how to install superset.

it’s difficult to install ??

https://superset.apache.org/docs/intro

https://flask-appbuilder.readthedocs.io/en/latest/installation.html

how to use superset ?

superset is a modern data exploration and visualization platform

supported databases

在这里插入图片描述

install superset

brew install pyenv-virtualenv

virtualenv is shipped in Python 3.6+ as venv instead of pyvenv.
See https://docs.python.org/3.6/library/venv.html
python3 -m venv venv
. venv/bin/activate

pip install apache-superset

superset db upgrade

# Create an admin user in your metadata database (use `admin` as username to be able to load the examples)
export FLASK_APP=superset
superset fab create-admin

# Load some data to play with
superset load_examples

# Create default roles and permissions
superset init

# To start a development web server on port 8088, use -p to bind to another port
superset run -p 8088 --with-threads --reload --debugger

tableau

it’s similar to superset, but
i don’t know tableau

if you want to learn superset by video , you can search superset in bilibilic.com

miniconda?

install
https://docs.conda.io/en/latest/miniconda.html

### Tableau 与 Power BI 功能及应用场景对比 #### 数据连接能力 Tableau 提供强大的数据连接功能,尤其是在版本更新中不断优化用户体验。例如,在2020.2版中引入了“关系”特性来简化数据源连接过程[^3]。然而需要注意的是,考试所涉及的特定版本可能不具备这些新特性。 Power BI 同样支持多种数据源接入,并且其界面设计直观易懂,适合初学者快速上手。两者在这方面各有千秋,但就初始学习曲线而言,某些用户认为 Superset 更容易入门相比传统工具如 Cognos 或 Business Objects 而言[^2]。 #### 性能分析记录 当启用性能录制时,如果是在 Tableau Desktop 上操作,则需注意具体实现细节会有所不同;而针对服务器端的操作指南则会在专门章节里阐述[^5]。对于企业级部署来说,如何高效地监控和提升仪表板加载速度是非常重要的考量因素之一。 #### 自定义样式保存 通过 `.tps` 文件可以跨不同工作簿共享相同的配色方案从而维持统一的品牌形象风格[^4]。这一机制有助于团队协作期间保持视觉一致性。虽然这里提到的是关于 Tableau 的情况,但是类似的概念也可以应用于其他可视化软件当中,比如 Microsoft Excel 中的工作表模板或者 PowerPoint 主题设定等等。 #### 计算洞察应用 无论是处理数值型字段的最大值、最小值、平均数还是总计统计量计算,亦或是基于复杂过滤条件组合筛选目标群体成员等场景下,都可以充分利用预设好的算法模型来进行深入探索发现潜在规律趋势[^1]。这种灵活性使得商业智能平台成为现代数据分析不可或缺的一部分。 ```python import pandas as pd # 假设我们有一个DataFrame df 包含销售数据 summary_stats = { 'Max': lambda x: max(x), 'Min': min, 'Avg': 'mean', 'Sum': sum } aggregated_results = df['Sales'].agg(summary_stats) print(aggregated_results) ``` 上述代码片段展示了如何利用 Pandas 库执行基本聚合运算任务,这正是许多BI解决方案背后的核心逻辑所在之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值