使用yolov5训练数据集笔记

该文介绍了如何准备目标检测的训练过程,包括安装labelimg进行图像标注,下载yolov5源码并安装依赖,创建数据文件夹结构,用labelimg标注目标,分离训练集和测试集,以及修改yolov5配置文件后开始训练。
摘要由CSDN通过智能技术生成

准备工作

1. 安装labelimg

labelimg:主要用于目标检测的目标框绘制,得到关于我们训练的边框位置、类别等数据

pip install labelimg

2. 下载yolov5源码

我使用的是v7.0版本,直接下载即可,下载后解压出来
在这里插入图片描述

2.1 安装yolov5运行依赖包

进入到解压出来的文件夹,运行此指令:

pip install -r requirements.txt

3.准备数据

一、在yolov5的同级目录下创建如下图结构文件夹,名字最好不要更改
在这里插入图片描述
images:保存的是原图片,train文件夹保存用于训练集图片,val文件夹保存所有的图片,test文件夹用于保存测试集图片。

labels:保存labelimg转化出来的yolo txt文件,train文件夹保存训练集图片的yolo信息,val文件夹保存所有的图片的yolo信息,test文件夹用于保存测试集图片yolo信息。

4.目标标注

使用labelimg进行目标标注

windows在控制台输入labeli按下tap键可自动补全,回车即可

labelImg.exe

在这里插入图片描述
打开以后如下图:
在这里插入图片描述

  1. open Dir是原图片文件夹路径:打开第3步中创建的文件夹images/val

  2. Change Save Dir是保存yolo信息的文件夹:打开第3步创建的文件夹labels/val

  3. 开始目标标注,鼠标点击Edit>Create RectBox(或者按下键盘w键也可以)后就可以在图片上进行目标标注
    在这里插入图片描述

  4. 打开自动保存,
    在这里插入图片描述
    ![在这里插入图片描述](https://img-blog.csdnimg.cn/61443549f37c4a2eb07495866bd7d1e7.png

  5. 选择保存为yolo txt格式
    在这里插入图片描述
    点击切换
    在这里插入图片描述

  6. 标注目标以后可以通过按键盘a(上一张)或者d(下一张)来切换图片,标注的图片会自动保存在这里插入图片描述

5. 分离训练集和测试集数据

例如在images/val中如下图片:
0001.jpg
0002.jpg
0003.jpg
0004.jpg
0005.jpg
0006.jpg

将0001.jpg ~ 0005.jpg复制到images/train文件夹下;将0006.jpg复制到images/test文件夹下.

同样的,也要将转化后的对应的yolo信息文件移动到对应的文件夹;
将0001.txt ~ 0005.txt复制到labels/train文件夹下;将0006.txt复制到labels/test文件夹下.

6.修改源代码路径

检测train.py文件找到data参数对应的默认文件:
在这里插入图片描述
修改coco128.yaml文件
在这里插入图片描述
nc:表示检测的类别数量,这里只检测人,只有1个
names: 表示检测的类别,这里只检测人

还要修改models文件夹下的yolov5s.yaml文件
在这里插入图片描述
修改完成以后直接运行指令开始训练即可

python train.py
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值