1、基本生产要素:
土地、劳动力、资本、技术、数据
2、数据的概括性度量:
3、卡方分布:
它是描述随机变量服从正态分布的平方和的分布,为连续性分布
卡方分布的概率密度函数是一个非对称的曲线,图像呈现出右偏的特征
特点:
1.非负性:卡方分布的取值范围为非负数,即随机变量服从卡方分布时,其取值不会小于0
2.右偏性:卡方分布的曲线呈现出右偏特征,即曲线的尾部向右侧延伸得更长,左侧更短
3.自由度对形状的影响:卡方分布的形状由自由度参数控制,自由度越大,曲线越平缓,呈现出更接近正态分布的特征
4.均值和方差:卡方分布的均值等于自由度参数,方差等于自由度的两倍
卡方分布只有一个参数‘自由度’,它的形状随自由度的变化而变化;它都是平方,所以图里都是正的,没有负的;
通过上图可以看到,自由度小的时候,呈偏态;当自由度趋于无穷的时候,呈正态。
5.应用领域:
卡方检验是一种常用的统计分析方法,用于比较观察值与期望值之间的差异。其适用条件包括以下几个方面:
1. 离散型变量:卡方检验只能用于离散型变量,即变量的取值是有限的、离散的。例如,性别、血型等。
2. 样本数据:卡方检验需要样本数据进行统计分析,样本数据应该来自于研究的总体,且样本数据量不宜过少。
3. 独立性:卡方检验要求变量之间相互独立,即一个变量的取值与另一个变量的取值之间没有关联。
4. 足够的期望次数:在卡方检验中,每个单元格中的期望次数不应该过小,否则会导致统计结果的不准确。
需要注意的是,卡方检验对于数据的要求比较严格,如果数据不符合要求,可能会导致统计分析结果的错误。因此,在进行卡方检验之前,需要对数据进行预处理和筛选,确保数据符合要求。
另外,卡方检验只能用于比较两个或多个分类变量之间的关系,不能用于比较连续型变量之间的关系。如果需要比较连续型变量之间的关系,需要使用其他统计分析方法,如t检验、方差分析等。
它只能统计样本量,不能统计样本的参数,均值是样本参数,所以卡方检验不能用于比较均值。
样本方差抽样分布服从卡方分布
4、
置信区间表达了估计的精确度,置信度反映了估计的可靠程度。
置信度一定时,增加测定次数 n ,置信区间变 ________ ; n 不变时,置信度提高,置信区间变 _______
["窄","宽"]