SVD推荐算法(一)

SVD推荐算法(一)

 

看了不少论文,总结起来用SVD做推荐主要有两种不同的方式。

1 本质上是memory-based,只不过先用SVD对user-item的评分矩阵做降维,得到降维后的user特征和item特征,可以分别做userbased的协同过滤和itembased的协同过滤。

2  本质上是model-based,跟传统数学意义的SVD没有太大关系,只不过借鉴了SVD分解R=U*S*V这个形式,通过最优化方法进行模型拟合,求得R=U*V。

 

本文主要讲解第一种情况,第二种情况下次再讲。

可以参考的论文:

《Applying SVD on Generalized Item-based Filtering 》

《Application of Dimensionality Reduction in Recommender System -- ACase Study》

 

 

memory-based的userbased和itembased关键点之一,是user相似度和item相似度的计算。

而相似度的计算依赖于特征。

 

最原始的做法,一个user的特征就是她对所有item的打分,而一个item的特征就是所有user对

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值