【图像识别】【读论文】纸币图像特征提取和识别问题

在纸币特征提取与识别研究的诸多技术当中,近几年比较流行的方法主要是基于样本统计分析的有模板匹配及其各种改进的算法。这种算法其主要的原理是通过对不同类别纸币图像特征的大量实验分析,并针对每一类别对应的建立不同的图像特征集标准库,然后对每一特征集标准库设定同一特定的阀值或根据实际应用中的具体分析结果预先的设定一组特定的阀值。这样当我们对纸币进行实时识别时,就可以将需要识别的纸币特征与其对应的标准库进行实时的匹配比较,并根据我们实际匹配计算所得的相似测度来得出纸币匹配与否的结论。由于其计算相对来说比较简单,如果有新币种导入只需要新币种的类特征集加入到标准库里即可特点,具有较好的可扩展性好且在硬件设计上也很容易来实现。当然这种算法的弊端也是相当明显的,实际操作中需要工作人员对大量的纸币进行分析,并针对每一纸币特点设计不同的纸币特征提取方法,不仅耗时费力自动化程度较低,而且在对阀值的确定上容易出现偏差,实际识别结果显示识别准确度也不是很理想。

1、 纸币图像采集

抽样、量化

硬件选择 CIS接触式CMOS摄像,图像受环境影响小,失真小

2、 纸币图像的预处理

图像处理技术主要包括图像变换、图像增强、图像复原、图像压缩编码、图像特征抽取、图像分割、图像的检测和图像模板处理等方面。

本系统主要针对:纸币图像的噪声处理、纸币图像非均匀性的自动配光处理、纸币图像的边界界定和纸币图像的倾斜度的校正。

内部噪声:

1)     由电和光的自身性质所引起,如热噪声;

2)     仪器物理运动所引起,如接头物理性振动

3)     图像采集仪器,光学底片上的颗粒噪声

4)     自身硬件电路噪声,CRT偏转电路电子噪声

外部噪声:

1.    摄像机摄像器件所引起的噪声

2.    光电转换所引起的噪声

3.    光学噪声

常见噪声处理方法:低通或者高通滤波器采用平滑方法,用某一像素点领域内各像素的加权平均值替代原有的像素值,对图像处理过程中平滑了图像边缘使图像边界变得模糊,同时引起新的噪声。

本文:八方向判断阈值自适应去噪声,首先通过算法判断目标是否是噪声,然后对噪声进行自适应处理。

【由作者的分析可以得知,这里属于微改进,将原有8像平均改为:噪声二值判断,之后将原有几何平均通过统计学规律(主要是均值方差等统计特征)动态改变噪声阈值】

自动配光方案:

原因:不考虑光照不均匀条件,仅考虑CCD或者CMOS对不同强度、色温光的响应曲线,不考虑光强极大和极小,响应曲线为线性,引入加性噪声。

解决:通过标准色卡求得存在问题的响应曲线,之后通过线性方程对响应曲线进行纠正。

纸币倾斜度校正:

Hough变换:通过Sobel算子求取直线,基于点线对偶,将图像进行旋转,Sobel本质是一阶导数

快速寻角点:通过检测四个角确定斜线,之后进行角度变换

【快速寻角点的方法很巧妙,本质是通过约束条件,减小不确定性,进而减小问题复杂度,使用更贱简单的方法解决】

1、 纸币面值及版本识别

不同面值和版本的纸币长宽不同,获得几何形状信息进而判断;

50RMB和5RMB尺寸相同的情况下,选择面值部分区域,进行特征识别,进而判断是多少钱。

2、 纸币的面向识别

模式识别大都是根据试错法及各种模板匹配算法的改进主要有二维模板匹配方法和及其改进的基于灰度投影的一维模板匹配算法)。由于篇幅关系,这里将仅对上述所提及的试错法做说明,所谓试错法即通过手工寻找不同种类人民币的特征,并据此来设定阀值,然后找出不同纸币的差异,完成特征提取,达到对纸币面向识别的目的。

本文将采用图像分割技术首先将人民币图像分成若干M*N区域特征块,然后对每一个区域特征块进行灰度值累加并求得累加后的平均值,并把灰度累加平均值作为每一区域块的特征值,最后这些特征块的特征值对每一个 SOFM 神经网进行输入对应着神经网络的输入层的M*N个输入端来完成对神经节点的刺激,以最大刺激节点作为输出,神经网络有四种输出端对应着人民的四种不同的面向,从而达到完成人民币面向的识别。

自组织神经网络理论是由国外学者 Kohonen由人脑神经元特点提出来的,其主要的原理是,在某类模式信号对神经网络的输入端进行输入时,网络输出层的某一神经节点就会因得到最大的刺激而最终获胜,于此同时,获胜的节点的周围其它的一些神经网络节点也会因为侧向的相互作用而对应的受到较大刺激。这样,神经网络就可以根据这些节点连接对应的权值矢量值来往输入模式的方向作进行对应的参数修正。当然如果输入模式的类别发生改变,那么获胜节点就会也从原来某一节点移动到其它某一节点上。根据这一原理,SOFM 网络就能以自组织的方式进行大量的样本训练,并根据样本数据来对网络的权值进行调整,以达到网络输出层特征最终能够反映输入样本数据的分布。所以,我们就可以根据 SOFM 神经网络的具体的输出情况对输入模式所属的类别进行判断,当然在这一过程中我们也能够获取整个数据区域的大概分布的情况,从而根据样本数据信息特征来提取所有数据本质特征的大概分布。

【这里由作者的分析可以知道,SOFM神经网络本身是求解分类器特征的工具,类似模式识别中的聚类分析】


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值