Datawhale X 李宏毅苹果书 AI夏令营 Task2笔记

       Datawhale X 李宏毅苹果书 向李宏毅学深度学习(进阶) 是 Datawhale 2024 年 AI 夏令营第五期的学习活动(“深度学习 进阶”方向

       往期task1链接:深度学习进阶-Task1

       我做的task1的笔记博客:传送门

       Datawhale官方的task2链接:深度学习进阶-Task2

       Github-《深度学习详解》开源地址:传送门

《深度学习详解》主要内容源于《机器学习》(2021年春),选取了《机器学习》(2017年春) 的部分内容,在这些基础上进行了一定的原创,补充了不少除这门公开课之外的深度学习相关知识。为了尽可能地降低阅读门槛,笔者对这门公开课的精华内容进行选取并优化,对所涉及的公式都给出详细的推导过程,对较难理解的知识点进行了重点讲解和强化,以方便读者较为轻松地入门。

       在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节,包括——

  • 卷积神经网络、Transformer、生成模型、自监督学习(包括 BERT 和 GPT)等深度学习常见算法,

  • 对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关进阶算法。


目录

1. 深度学习优化器的演变

2. AdaGrad

AdaGrad的优点:

AdaGrad的缺点:

3. RMSProp

RMSProp的优点:

RMSProp的缺点:

4. Adam

Adam的优点:

Adam的缺点:

5. 学习率调度

6. 分类问题的损失函数

7. 拓展-  RAdam

RAdam的优点:

RAdam的缺点:

8. 知识点总结

9.(实践任务):HW3(CNN)卷积神经网络-图像分类

       获取数据集和代码文件命令:

       训练模型代码

       运行结果

       十分钟跑通baseline视频(跑baseline过程中出现问题的可以对照着看看):


       在第五期的进阶方向的学习内容中,Task2在Task1的基础上继续叙述,主要学习自适应学习率、学习率调度、优化和分类问题的知识点,对应《深度学习详解》一书中的3.3&4&5及3.6的内容。

       在深度学习模型训练中,优化算法起着至关重要的作用。它决定了模型参数更新的方向和速度,进而影响模型的性能和泛化能力。本笔记将结合图文,深入浅出地解释深度学习中的优化概念和算法,包括局部极小值、鞍点、批量梯度下降、随机梯度下降、动量法以及自适应学习率。

1. 深度学习优化器的演变

       深度学习模型的训练过程本质上是一个优化问题,目标是最小化损失函数。传统的梯度下降法存在着一些局限性,例如:

  • 学习率固定: 无法适应不同参数和不同阶段的训练需求。
  • 梯度消失/爆炸: 对于深层网络,梯度在反向传播过程中会逐渐减小或增大,导致训练困难。
  • 陷入局部最优解: 梯度下降法容易陷入局部最优解,无法找到全局最优解。

 不同学习率对训练的影响

       最原始的梯度下降连简单的误差表面都做不好,因此需要更好的梯度下降的版本。在梯 度下降里面,所有的参数都是设同样的学习率,这显然是不够的,应该要为每一个参数定制 化学习率,即引入自适应学习率(adaptive learning rate)的方法,给每一个参数不同的学习率。

       为了克服这些局限性,研究者们提出了许多改进的优化器,其中最常用的包括AdaGrad、RMSProp和Adam。

2. AdaGrad

        AdaGrad是最早提出的自适应学习率优化器,其核心思想是根据参数的历史梯度信息动态调整学习率。具体来说,AdaGrad会对每个参数维护一个累加的平方梯度,并将其用于更新学习率。梯度较大的参数对应的学习率会逐渐减小,梯度较小的参数对应的学习率会逐渐增大。

def sgd_adagrad(parameters, sqrs, lr):
	eps = 1e-10
	for param, sqr in zip(parameters, sqrs):
 	sqr[:] = sqr + param.grad.data ** 2
 	div = lr / torch.sqrt(sqr + eps) * param.grad.data
 	param.data = param.data - div
AdaGrad的优点
  • 避免了梯度消失/爆炸问题,更适合处理稀疏数据。
  • 无需手动调整学习率,可以自动适应不同参数和不同阶段的训练需求。
AdaGrad的缺点
  • 学习率逐渐减小,可能导致训练速度变慢,甚至停止。
  • 会导致参数更新步长越来越小,难以跳出局部最优解。

3. RMSProp

        RMSProp是AdaGrad的改进版本,它引入了超参数α来控制历史梯度的权重,使学习率更具动态性。具体来说,RMSProp会对每个参数维护一个指数衰减的平均平方梯度,并将其用于更新学习率。α值越小,历史梯度的影响越大;α值越大,历史梯度的影响越小。

RMSProp的优点
  • 解决了AdaGrad学习率过快衰减的问题,提高了训练速度。
  • 可以更好地处理非平稳目标函数。
RMSProp的缺点
  • 学习率调整不够平滑,可能导致训练过程不稳定。
  • 需要手动设置超参数α,选择不当会影响训练效果。

4. Adam

        Adam是近年来最常用的优化器之一,它结合了AdaGrad和RMSProp的优点,并引入了动量项,使参数更新更加平滑。具体来说,Adam会对每个参数维护两个状态:一个是指数衰减的平均梯度,用于更新学习率;另一个是指数衰减的平均梯度平方,用于更新动量。

Adam的优点
  • 具有自适应学习率和动量的特性,训练速度快,效果稳定。
  • 无需手动调整学习率,可以自动适应不同参数和不同阶段的训练需求。
  • 避免了梯度消失/爆炸问题,更适合处理深层网络。
Adam的缺点
  • 需要设置多个超参数,选择不当会影响训练效果。
  • 对于某些问题,Adam的效果可能不如专门的优化器。

5. 学习率调度

        学习率调度是指在训练过程中动态调整学习率,以提高训练速度和效果。常见的学习率调度方法包括:

  • 学习率退火: 随着训练次数的增加,逐渐减小学习率,使模型更加精细地调整参数。
  • 学习率预热: 训练初期先增大学习率,快速探索误差空间,然后逐渐减小学习率,进行精细调整。
  • 周期性调整: 将学习率设置为周期性变化的函数,例如余弦退火。

6. 分类问题的损失函数

分类问题常用的损失函数包括:

  • 均方误差: 计算预测值与真实值之间的平方差,适用于回归问题。
  • 交叉熵: 计算预测概率分布与真实概率分布之间的距离,更适合分类问题。
  • Hinge Loss: 计算预测值与真实标签的夹角,适用于支持向量机。
  • Log Loss: 计算预测概率与真实概率的对数差,适用于概率预测问题。

均方误差与交叉熵在分类问题上有什么不同呢?

均方误差与交叉熵的区别

  • 均方误差: 适用于回归问题,但不适合分类问题,因为它没有考虑到类别之间的差异。
  • 交叉熵: 适用于分类问题,因为它可以有效地衡量预测概率分布与真实概率分布之间的差异。

7. 拓展-  RAdam

       RAdam是Adam的改进版本,它引入了阶跃下降的概念,使学习率调整更加平滑。具体来说,RAdam会根据梯度变化情况,动态调整学习率的更新步长。当梯度变化较大时,增加学习率的更新步长;当梯度变化较小时,减小学习率的更新步长。

RAdam对不同的学习率具有鲁棒性,同时仍能快速收敛并获得更高的精度(CIFAR数据集)

       正如你所看到的,RAdam提供了一个动态启发式方法来提供自动化的方差衰减,从而消除了在训练期间热身所涉及手动调优的需要。此外,RAdam对学习速率变化(最重要的超参数)具有更强的鲁棒性,并在各种数据集和各种AI体系结构中提供更好的训练精度和泛化。

       PyTorch的官方github提供了RAdam的实现:https://github.com/LiyuanLucasLiu/RAdam

RAdam的优点
  • 解决了Adam在训练初期学习率过小的问题,提高了训练速度。
  • 可以更好地处理非平稳目标函数。
RAdam的缺点
  • 需要设置额外的超参数,选择不当会影响训练效果。
  • 对于某些问题,RAdam的效果可能不如Adam。

8. 知识点总结

        选择合适的优化器和学习率调度方法对深度学习模型的训练至关重要。AdaGrad、RMSProp和Adam各有优缺点,需要根据具体问题选择。学习率退火和预热可以有效提高训练速度和效果。RAdam作为Adam的改进版本,也值得尝试。

9.(实践任务):HW3(CNN)卷积神经网络-图像分类

       Homework3的内容是通过利用卷积神经网络架构,通过一个较小的10种食物的图像的数据集训练一个模型完成图像分类的任务。       

       获取数据集和代码文件命令:
git clone https://www.modelscope.cn/datasets/Datawhale/LeeDL-HW3-CNN.git
       训练模型代码
  1. 初始化追踪器:stale 和 best_acc 用于追踪训练过程中的损失和准确率。stale 表示连续没有改进的轮数,当 stale 大于设定的阈值 patience 时,提前停止训练。

  2. 训练阶段:在训练阶段,首先确保模型处于训练模式,然后遍历训练数据加载器 train_loader 中的每个批次。对于每个批次,将图像数据 imgs 和对应的标签 labels 传递给模型,计算输出 logits。然后计算交叉熵损失 loss,并清除上一步中参数中存储的梯度。计算参数的梯度,并进行梯度裁剪以稳定训练。最后更新模型参数。

  3. 验证阶段:在验证阶段,首先确保模型处于评估模式,然后遍历验证数据加载器 valid_loader 中的每个批次。对于每个批次,将图像数据 imgs 和对应的标签 labels 传递给模型,计算输出 logits。计算损失 loss 和准确率 acc

  4. 打印训练和验证信息:在训练和验证阶段,打印当前轮次的损失和准确率。在验证阶段,如果当前轮次的准确率高于最佳准确率 best_acc,则更新 best_acc 和保存模型。

  5. 保存模型:在训练过程中,如果找到更好的模型,则保存模型参数。

 初始化追踪器,这些不是参数,不应该被更改
stale = 0
best_acc = 0

for epoch in range(n_epochs):
    # ---------- 训练阶段 ----------
    # 确保模型处于训练模式
    model.train()

    # 这些用于记录训练过程中的信息
    train_loss = []
    train_accs = []

    for batch in tqdm(train_loader):
        # 每个批次包含图像数据及其对应的标签
        imgs, labels = batch
        # imgs = imgs.half()
        # print(imgs.shape,labels.shape)

        # 前向传播数据。(确保数据和模型位于同一设备上)
        logits = model(imgs.to(device))

        # 计算交叉熵损失。
        # 在计算交叉熵之前不需要应用softmax,因为它会自动完成。
        loss = criterion(logits, labels.to(device))

        # 清除上一步中参数中存储的梯度
        optimizer.zero_grad()

        # 计算参数的梯度
        loss.backward()

        # 为了稳定训练,限制梯度范数
        grad_norm = nn.utils.clip_grad_norm_(model.parameters(), max_norm=10)

        # 使用计算出的梯度更新参数
        optimizer.step()

        # 计算当前批次的准确率
        acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()

        # 记录损失和准确率
        train_loss.append(loss.item())
        train_accs.append(acc)

    train_loss = sum(train_loss) / len(train_loss)
    train_acc = sum(train_accs) / len(train_accs)

    # 打印信息
    print(f"[ 训练 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {train_loss:.5f}, acc = {train_acc:.5f}")

    # ---------- 验证阶段 ----------
    # 确保模型处于评估模式,以便某些模块如dropout能够正常工作
    model.eval()

    # 这些用于记录验证过程中的信息
    valid_loss = []
    valid_accs = []

    # 按批次迭代验证集
    for batch in tqdm(valid_loader):
        # 每个批次包含图像数据及其对应的标签
        imgs, labels = batch
        # imgs = imgs.half()

        # 我们在验证阶段不需要梯度。
        # 使用 torch.no_grad() 加速前向传播过程。
        with torch.no_grad():
            logits = model(imgs.to(device))

        # 我们仍然可以计算损失(但不计算梯度)。
        loss = criterion(logits, labels.to(device))

        # 计算当前批次的准确率
        acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()

        # 记录损失和准确率
        valid_loss.append(loss.item())
        valid_accs.append(acc)
        # break

    # 整个验证集的平均损失和准确率是所记录值的平均
    valid_loss = sum(valid_loss) / len(valid_loss)
    valid_acc = sum(valid_accs) / len(valid_accs)

    # 打印信息
    print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")

    # 更新日志
    if valid_acc > best_acc:
        with open(f"./{_exp_name}_log.txt", "a"):
            print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f} -> 最佳")
    else:
        with open(f"./{_exp_name}_log.txt", "a"):
            print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")

    # 保存模型
    if valid_acc > best_acc:
        print(f"在第 {epoch} 轮找到最佳模型,正在保存模型")
        torch.save(model.state_dict(), f"{_exp_name}_best.ckpt")  # 只保存最佳模型以防止输出内存超出错误
        best_acc = valid_acc
        stale = 0
    else:
        stale += 1
        if stale > patience:
            print(f"连续 {patience} 轮没有改进,提前停止")
            break
       运行结果

       简单的 baseline 不过多赘述,以下是运行结果:

         十分钟跑通baseline视频(跑baseline过程中出现问题的可以对照着看看):

  • 13
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值