线性代数笔记

线性代数的本质

序言

初次学习线性代数的学生往往对这一科目的理解很肤浅,学生在教室中学到的可能是如何进行各种各样的计算,比如:

  • 矩阵乘法
    [ a b c d ] [ e f g h ] = [ a e + b g a f + b h c e + d g c f + d h ] \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \left[ \begin{matrix} e & f \\ g & h \end{matrix} \right] = \left [ \begin{matrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{matrix} \right] [acbd][egfh]=[ae+bgce+dgaf+bhcf+dh]

  • 行列式
    D e t ( a b c d ) = a c − b c Det \left ( \begin{matrix} a & b \\ c & d \end{matrix} \right) = \quad ac \quad - \quad bc Det(acbd)=acbc

  • 叉积,其中用到了行列式
    v × w = D e t ( i ^ j ^ k ^ v 1 v 2 v 3 w 1 w 2 w 3 ) v \times w = Det \left( \begin{matrix} \hat i & \hat j & \hat k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{matrix} \right) v×w=Deti^v1w1j^v2w2k^v3w3

  • 特征值
    D e t ( A − λ I ) = 0 Det(A - \lambda I) = 0 Det(AλI)=0
    ​ 但结果很可能是学生并非真正理解为什么矩阵乘法要如此定义,为什么叉积与行列式有所关联,又或者特征值究竟代表了什么;大部分时候,学生对于矩阵的数值操作驾轻就熟,但对于潜在的几何直观知之甚少。在数值水平和几何水平上理解线性代数上有着根本性的差异,它们各有千秋,但粗略地讲,几何水平上理解能让你判断出解决特定问题需要用什么样的工具,感受它们为什么有用,以及如何解读最终结果;数值水平上的理解则能让你顺利应用这些工具。

在这里插入图片描述

​ 假如你在学习线性代数时,并没有几何上的直观理解作为坚实基础,问题可能暂时不会浮出水面,但当你在你的研究领域中继续钻研时,它就会显露出来;

向量究竟是什么

线性代数中最基础、最根源的组成部分就是向量,有三种看待向量的观点,看似不同却有所关联。

  • 物理专业学生的视角

    向量是空间中的箭头,决定一个向量的是它的长度和它所指的方向,但只要以上两个特征相同,你可以自由移动一个向量而保持它不变。

  • 计算机专业学生的视角

    向量是有序的数字列表,在这里,“向量” 只不过是 “列表” 的一个花哨的说法。

  • 数学家的视角

    大致地说,向量可以是任何东西,只要保证两个向量相加及数字与向量相乘是有意义的即可;

向量加法和向量数乘贯穿线性代数始终,二者起着重要的作用。

​ 线性代数的效用很少体现在这些观点的其中一个上,而是更多地体现在它能够在这些观点中相互转化。线性代数为数据分析提供了一条大量数据列表概念化、可视化的渠道,它让数据样式变得非常明晰,并让你大致了解特定运算的意义。另一方面,线性代数给物理学家和计算机图形程序员提供了一种语言,让他们通过计算机处理的数字来描述操纵空间。

,它让数据样式变得非常明晰,并让你大致了解特定运算的意义。另一方面,线性代数给物理学家和计算机图形程序员提供了一种语言,让他们通过计算机处理的数字来描述操纵空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值