1014 Waiting in Line (PAT甲级)

这道题柳婼的解法和我的方法有些区别,链接如下:1014. Waiting in Line (30)-PAT甲级真题(queue的应用)_柳婼的博客-CSDN博客

我的代码也可以改进一下,把window结构体的id取消掉,每次只需要循环一遍窗口就能找出最短队伍(firstLeave最小的窗口)。

我的解法就是先把所有人的结束时间初始化到INF,然后算在5pm之前被服务的客户的结束时间,最后输出的时候做一下判断就可以了。

#include <algorithm>
#include <cstdio>
#include <queue>
#include <vector>
const int maxK = 1001;
const int INF = 99999999;

struct window {
  int id;
  int firstLeave;
  std::queue<int> line;
};

bool cmp(const window &a, const window &b) {
  return a.firstLeave != b.firstLeave ? a.firstLeave < b.firstLeave
                                      : a.id < b.id;
}

int N, M, K, Q, cnt, query;
int process[maxK];
int ans[maxK];
std::vector<window> vec;

int main() {
  scanf("%d %d %d %d", &N, &M, &K, &Q);
  std::fill(ans, ans + K + 1, INF);
  for (int i = 1; i <= K; ++i) {
    scanf("%d", &process[i]);
  }
  for (int i = 1; i <= N; ++i) {
    window temp;
    temp.id = i;
    temp.firstLeave = process[i] + 8 * 60;
    ans[i] = temp.firstLeave;
    for (int j = 0; j < M; ++j) {
      if (j * N + i <= K) {
        temp.line.push(j * N + i);
      }
    }
    vec.push_back(temp);
  }
  cnt = N * M;
  for (int i = 1; i <= K; ++i) {
    sort(vec.begin(), vec.end(), cmp);
    if (vec[0].firstLeave >= 17 * 60) {
      break;
    }
    if (cnt < K) {
      vec[0].line.push(++cnt);
    }
    vec[0].line.pop();
    if (!vec[0].line.empty()) {
      ans[vec[0].line.front()] =
          vec[0].firstLeave + process[vec[0].line.front()];
      vec[0].firstLeave = ans[vec[0].line.front()];
    } else {
      vec[0].firstLeave = INF;
    }
  }
  for (int i = 0; i < Q; ++i) {
    scanf("%d", &query);
    if (ans[query] == INF) {
      printf("Sorry\n");
    } else {
      printf("%02d:%02d\n", ans[query] / 60, ans[query] % 60);
    }
  }
  return 0;
}

题目如下:

Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with Mcustomers. Hence when all the N lines are full, all the customers after (and including) the (NM+1)st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customeri​ will take Ti​ minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 customers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer1​ is served at window1​ while customer2​ is served at window2​. Customer3​ will wait in front of window1​ and customer4​ will wait in front of window2​. Customer5​ will wait behind the yellow line.

At 08:01, customer1​ is done and customer5​ enters the line in front of window1​ since that line seems shorter now. Customer2​ will leave at 08:02, customer4​ at 08:06, customer3​ at 08:07, and finally customer5​ at 08:10.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤20, number of windows), M (≤10, the maximum capacity of each line inside the yellow line), K (≤1000, number of customers), and Q (≤1000, number of customer queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output Specification:

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.

Sample Input:

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7

Sample Output:

08:07
08:06
08:10
17:00
Sorry
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值