博弈——游戏(SG 函数)

18 篇文章 0 订阅

题目链接

博弈——游戏(SG 函数)

题目描述

小 N 和小 O 在玩游戏。他们面前放了 n 堆石子,第 i 堆石子一开始有 ci 颗石头。他们轮流从某堆石子中取石子,不能不取。最后无法操作的人就输了这个游戏。但他们觉得这样玩太无聊了,更新了一下规则。具体是这样的:对于一堆有恰好 m 颗石子的石头堆,假如一个人要从这堆石子中取石子,设他要取石子数为 d,那么 d 必须是 m 的约数。最后还是无法操作者输。
现在小 N 先手。他想知道他第一步有多少种不同的必胜策略。一个策略指的是,从哪堆石子中,取走多少颗石子。只要取的那一堆不同,或取的数目不同,都算不同的策略。

输入描述

第一行一个整数 n。
接下来一行 n 个整数,分别代表每堆石子的石子数目。
数据保证输入的所有数字都不超过105,均大于等于 1,且为整数。

输出描述

一行一个整数代表小 N 第一步必胜策略的数量。

示例

输入

10
47 18 9 36 10 1 13 19 29 1

输出

7

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int S[maxn],SG[maxn],a[maxn],n,cnt=0;
vector<int> f[maxn];

void getSG()
{
	memset(SG,0,sizeof(SG));
	for(int i=1;i<=maxn;i++){
		cnt++;
		for(int j=0;j<f[i].size();j++){
			S[SG[i-f[i][j]]]=cnt;
		}
		for(int t=0; ;t++){
			if(S[t]!=cnt){
				SG[i]=t;
				break;
			}
		}
	}
	return ;
}

int main()
{
	for(int i=1;i<=maxn;i++){
		for(int j=1;j*j<=i;j++){
			if(i%j==0){
				f[i].push_back(j);
				if(i/j!=j){
					f[i].push_back(i/j);
				}
			}
		}
	}
	getSG();
	cin>>n;
	int sum=0;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		sum^=SG[a[i]];
	}
	int ans=0;
	for(int i=1;i<=n;i++){
		for(int j=0;j<f[a[i]].size();j++){
			int x=f[a[i]][j];
			if(SG[a[i]-x]==(sum^SG[a[i]])){
				ans++;
			}
		}
	}
	cout<<ans<<endl;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值