训练赛——WZU ACM No.229(寒假训练赛1)

本文探讨了几个编程挑战,涉及字符串操作、数的排列与加密解密,如判断项链移动后相邻珍珠间线数是否相等,查询有序数组的特定值,以及古代密码的破解。通过分析算法思路,展示了如何利用排序、计数和逻辑判断解决这些问题。
摘要由CSDN通过智能技术生成

A - Links and Pearls

题目链接

题目大意

给定一串由线("-")和珍珠(“o”)构成的项链,问随意移动线或珍珠,是否能让每两个相邻珍珠之间的线的数量相等,若能,则输出“YES”,否则输出“NO”。

分析

可以分别对"-“和"o"的个数进行统计,然后看”-"的个数是否为"o"的个数的倍数。

#include<bits/stdc++.h>
using namespace std;

int main()
{
	string s;
	cin >> s;
	int a = 0, b = 0;
	for(int i = 0; i < s.length(); i++){
		if(s[i] == '-'){
			a++;
		}
		else{
			b++;
		}
	}
	if(a == 0 || b == 0 || a % b == 0){
		cout << "YES" << endl;
	}
	else{
		cout << "NO" << endl;
	}
	return 0;
}

B - Questions and answers

题目链接

题目大意

先给出 N 和 N 个数,然后用字符串 “###” 分割,接下来给出K 和 K 个询问,每次询问给出一个整数 i,问第 i 小的数字是多少。

分析

直接 sort 排序,然后输出第 i 位上的数字就好了。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 10;
int n, k;
int a[maxn];

int main()
{
	cin >> n;
	for(int i = 1; i <= n; i++){
		cin >> a[i];
	}
	getchar();
	char s[100];
	scanf("%s", s);
	sort(a + 1, a + 1 + n);
	cin >> k;
	while(k--){
		int x;
		cin >> x;
		cout << a[x] << endl;
	}
	return 0;
}

C - Ancient Cipher

题目链接

题目大意

有两种字符串加密的方法,一种是将字母的顺序打乱,另一种是将每一个字母都替换成另一个字母,如果后面的单词符合两种加密方式的结合,就输出 “YES”,否则输出 “NO”。

分析

只要看字符数统计分布是否一致就好了,我刚开始做的时候以为替换只能替换成字母的下一个字母,错了好几次,还是有点点坑的。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
char a[200], b[200];
int num1[26] = {0}, num2[26] = {0};

int main()
{
	scanf("%s", a);
	scanf("%s", b);
	memset(num1, 0, sizeof(num1));
	memset(num2, 0, sizeof(num2));
	if(strlen(a) != strlen(b)){
		cout << "NO" << endl;
	}
	else{
		int n = strlen(a);
		for(int i = 0; i < n; i++){
			num1[a[i] - 'A']++;
			num2[b[i] - 'A']++;
		}
		int flag = 1;
		sort(num1, num1 + 26);
		sort(num2, num2 + 26);
		for(int i = 0; i < 26; i++){
			if(num1[i] != num2[i]){
				flag = 0;
				break;
			}
		}
		if(flag){
			cout << "YES" << endl;
		}
		else{
			cout << "NO" << endl;
		}
	}

	return 0;
}

D - 24 Game

题目链接

题目大意

刚开始的时候,有 N 个整数的序列:1,2,…,N。在一个步骤中,你可以选择两个,分别表示 a 和 b,从序列中删除它们,然后将 a + b 或 a - b 或 a × b 追加到序列中。在 n - 1步之后,仅剩一个数字,问能否让这个数字等于 24。

分析

找特解。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int n;
	cin >> n;
	if(n <= 3){
		cout << "NO" << endl;
	}
	else if(n == 4){
		cout << "YES" << endl;
		cout << "1 * 4 = 4" << endl;
		cout << "2 * 3 = 6" << endl;
		cout << "4 * 6 = 24" << endl;
	}
	else if(n == 5){
		cout << "YES" << endl;
		cout << "2 * 4 = 8" << endl;
		cout << "3 * 5 = 15" << endl;
		cout << "8 + 15  = 23" << endl;
		cout << "1 + 23 = 24" << endl;
	}
	else if(n >= 6){
		cout << "YES" << endl;
		cout << "2 * 3 = 6" << endl;
		cout << "4 * 6 = 24" << endl;
		cout << "6 - 5 = 1" << endl;
		cout << "1 - 1 = 0" << endl;
		for(int i = 7; i <= n; i++){
			cout << "0 * " << i << " = 0" << endl;
		}
		cout << "0 + 24 = 24" << endl;
	}
	return 0;
}

E - Puzzle From the Future

题目链接

题目大意

给定一个字符串 b,我们需要找到一个字符串 a,使得两个字符串按位相加得到的结果最大,如果结果有连续相同的数字只能取一个。

分析

高位优先放大的数,后续每位放与前一位相异的最大数,而 a 和 b 都由 01 序列构成,因此最高位优先放 1 就能满足最大,接着假设 a[i] 取 1,若满足 1 + b[i] != a[i-1] + b[i-1],则 a[i] 取 1,否则取0。

#include<Bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int t, n, a[maxn];
char b[maxn];

int main()
{
	int t, n;
	scanf("%d", &t);
	while(t--){
		scanf("%d%s", &n, b);
		a[0] = 1;
		for(int i = 1; i < n; i++){
			if(b[i] - '0' + 1 == b[i-1] - '0' + a[i-1]){
				a[i] = 0;
			}
			else{
				a[i] = 1;
			}
		}
		for(int i = 0; i < n; i++){
			printf("%d", a[i]);
		}
		printf("\n");
	}
	return 0;
}

F - Different Divisors

题目链接

题目大意

给定一个正整数 d,要求找到一个最小的 a,a 需要满足:至少有 4 个因数,且任意两个因数之差的绝对值不小于 d。

分析

因为至少有 4 个因子,所以,容易推得,4 个因子一定是:
a1 = 1
a2 是不小于 a1 + d 的最小素数
a3 是不小于 a2 + d 的最小素数
a4 = a2 * a3
然后,用素数筛和二分就可以得到答案了。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
int prime[maxn], cnt;
bool vis[maxn];

void init()
{
	cnt = 0;
	for(int i = 2; i <= 30000; i++){
		if(!vis[i])
			prime[cnt++] = i;
		for(int j = 0; j < cnt && i * prime[j] <= 30000; j ++){
			vis[i*prime[j]] = true;
			if(i % prime[j] == 0){
				break;
			}
		}
	}
}

int main()
{
	init();
	int t, d;
	cin >> t;
	while(t--){
		cin >> d;
		int a = lower_bound(prime, prime + cnt, 1 + d) - prime;
		int b = lower_bound(prime, prime + cnt, prime[a] + d) - prime;
		ll ans = 1LL * prime[a] * prime[b];
		cout << ans << endl;
	}
	return 0;
}

G - Delta-wave

题目链接

题目大意

有一个数字塔,可以沿着数字之间的边走,给出两个数字,问其最短路径的长度是多少。

分析

对于两个数的距离,我们可以将其等价为它们的水平行号差、正斜排号差和反斜排号差三者之和,因此,我们只需要想办法计算出两个数字所在的坐标即可。
例如:点 n 在三个方向上的坐标为:
x = (int)sqrt(n - 1) + 1
y = (n - (x - 1) * (x - 1) + 1) / 2
z = (x * x - n) / 2 + 1

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int m, n;
	while(cin >> m >> n){
		int x1 = (int)sqrt(m - 1) + 1;
		int x2 = (int)sqrt(n - 1) + 1;
		int y1 = (m - (x1 - 1) * (x1 - 1) + 1) / 2;
		int y2 = (n - (x2 - 1) * (x2 - 1) + 1) / 2;
		int z1 = (x1 * x1 - m) / 2 + 1;
		int z2 = (x2 * x2 - n) / 2 + 1;
		int ans = abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2);
		cout << ans << endl;		
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值