A - Links and Pearls
题目大意
给定一串由线("-")和珍珠(“o”)构成的项链,问随意移动线或珍珠,是否能让每两个相邻珍珠之间的线的数量相等,若能,则输出“YES”,否则输出“NO”。
分析
可以分别对"-“和"o"的个数进行统计,然后看”-"的个数是否为"o"的个数的倍数。
#include<bits/stdc++.h>
using namespace std;
int main()
{
string s;
cin >> s;
int a = 0, b = 0;
for(int i = 0; i < s.length(); i++){
if(s[i] == '-'){
a++;
}
else{
b++;
}
}
if(a == 0 || b == 0 || a % b == 0){
cout << "YES" << endl;
}
else{
cout << "NO" << endl;
}
return 0;
}
B - Questions and answers
题目大意
先给出 N 和 N 个数,然后用字符串 “###” 分割,接下来给出K 和 K 个询问,每次询问给出一个整数 i,问第 i 小的数字是多少。
分析
直接 sort 排序,然后输出第 i 位上的数字就好了。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 10;
int n, k;
int a[maxn];
int main()
{
cin >> n;
for(int i = 1; i <= n; i++){
cin >> a[i];
}
getchar();
char s[100];
scanf("%s", s);
sort(a + 1, a + 1 + n);
cin >> k;
while(k--){
int x;
cin >> x;
cout << a[x] << endl;
}
return 0;
}
C - Ancient Cipher
题目大意
有两种字符串加密的方法,一种是将字母的顺序打乱,另一种是将每一个字母都替换成另一个字母,如果后面的单词符合两种加密方式的结合,就输出 “YES”,否则输出 “NO”。
分析
只要看字符数统计分布是否一致就好了,我刚开始做的时候以为替换只能替换成字母的下一个字母,错了好几次,还是有点点坑的。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
char a[200], b[200];
int num1[26] = {0}, num2[26] = {0};
int main()
{
scanf("%s", a);
scanf("%s", b);
memset(num1, 0, sizeof(num1));
memset(num2, 0, sizeof(num2));
if(strlen(a) != strlen(b)){
cout << "NO" << endl;
}
else{
int n = strlen(a);
for(int i = 0; i < n; i++){
num1[a[i] - 'A']++;
num2[b[i] - 'A']++;
}
int flag = 1;
sort(num1, num1 + 26);
sort(num2, num2 + 26);
for(int i = 0; i < 26; i++){
if(num1[i] != num2[i]){
flag = 0;
break;
}
}
if(flag){
cout << "YES" << endl;
}
else{
cout << "NO" << endl;
}
}
return 0;
}
D - 24 Game
题目大意
刚开始的时候,有 N 个整数的序列:1,2,…,N。在一个步骤中,你可以选择两个,分别表示 a 和 b,从序列中删除它们,然后将 a + b 或 a - b 或 a × b 追加到序列中。在 n - 1步之后,仅剩一个数字,问能否让这个数字等于 24。
分析
找特解。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n;
cin >> n;
if(n <= 3){
cout << "NO" << endl;
}
else if(n == 4){
cout << "YES" << endl;
cout << "1 * 4 = 4" << endl;
cout << "2 * 3 = 6" << endl;
cout << "4 * 6 = 24" << endl;
}
else if(n == 5){
cout << "YES" << endl;
cout << "2 * 4 = 8" << endl;
cout << "3 * 5 = 15" << endl;
cout << "8 + 15 = 23" << endl;
cout << "1 + 23 = 24" << endl;
}
else if(n >= 6){
cout << "YES" << endl;
cout << "2 * 3 = 6" << endl;
cout << "4 * 6 = 24" << endl;
cout << "6 - 5 = 1" << endl;
cout << "1 - 1 = 0" << endl;
for(int i = 7; i <= n; i++){
cout << "0 * " << i << " = 0" << endl;
}
cout << "0 + 24 = 24" << endl;
}
return 0;
}
E - Puzzle From the Future
题目大意
给定一个字符串 b,我们需要找到一个字符串 a,使得两个字符串按位相加得到的结果最大,如果结果有连续相同的数字只能取一个。
分析
高位优先放大的数,后续每位放与前一位相异的最大数,而 a 和 b 都由 01 序列构成,因此最高位优先放 1 就能满足最大,接着假设 a[i] 取 1,若满足 1 + b[i] != a[i-1] + b[i-1],则 a[i] 取 1,否则取0。
#include<Bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int t, n, a[maxn];
char b[maxn];
int main()
{
int t, n;
scanf("%d", &t);
while(t--){
scanf("%d%s", &n, b);
a[0] = 1;
for(int i = 1; i < n; i++){
if(b[i] - '0' + 1 == b[i-1] - '0' + a[i-1]){
a[i] = 0;
}
else{
a[i] = 1;
}
}
for(int i = 0; i < n; i++){
printf("%d", a[i]);
}
printf("\n");
}
return 0;
}
F - Different Divisors
题目大意
给定一个正整数 d,要求找到一个最小的 a,a 需要满足:至少有 4 个因数,且任意两个因数之差的绝对值不小于 d。
分析
因为至少有 4 个因子,所以,容易推得,4 个因子一定是:
a1 = 1
a2 是不小于 a1 + d 的最小素数
a3 是不小于 a2 + d 的最小素数
a4 = a2 * a3
然后,用素数筛和二分就可以得到答案了。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
int prime[maxn], cnt;
bool vis[maxn];
void init()
{
cnt = 0;
for(int i = 2; i <= 30000; i++){
if(!vis[i])
prime[cnt++] = i;
for(int j = 0; j < cnt && i * prime[j] <= 30000; j ++){
vis[i*prime[j]] = true;
if(i % prime[j] == 0){
break;
}
}
}
}
int main()
{
init();
int t, d;
cin >> t;
while(t--){
cin >> d;
int a = lower_bound(prime, prime + cnt, 1 + d) - prime;
int b = lower_bound(prime, prime + cnt, prime[a] + d) - prime;
ll ans = 1LL * prime[a] * prime[b];
cout << ans << endl;
}
return 0;
}
G - Delta-wave
题目大意
有一个数字塔,可以沿着数字之间的边走,给出两个数字,问其最短路径的长度是多少。
分析
对于两个数的距离,我们可以将其等价为它们的水平行号差、正斜排号差和反斜排号差三者之和,因此,我们只需要想办法计算出两个数字所在的坐标即可。
例如:点 n 在三个方向上的坐标为:
x = (int)sqrt(n - 1) + 1
y = (n - (x - 1) * (x - 1) + 1) / 2
z = (x * x - n) / 2 + 1
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int m, n;
while(cin >> m >> n){
int x1 = (int)sqrt(m - 1) + 1;
int x2 = (int)sqrt(n - 1) + 1;
int y1 = (m - (x1 - 1) * (x1 - 1) + 1) / 2;
int y2 = (n - (x2 - 1) * (x2 - 1) + 1) / 2;
int z1 = (x1 * x1 - m) / 2 + 1;
int z2 = (x2 * x2 - n) / 2 + 1;
int ans = abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2);
cout << ans << endl;
}
return 0;
}