18 Transformer 的动态流程

该博客探讨了Transformer在机器翻译中的使用,包括如何生成单个词和整个句子,并详细介绍了Transformer的基本框架。
摘要由CSDN通过智能技术生成
Transformer是一种基于自注意力机制的深度学习模型,最初由Google在2017年的论文《Attention is All You Need》中提出,广泛应用于自然语言处理领域,如机器翻译、文本生成等。Transformer的训练流程通常包括以下几个步骤: 1. **数据预处理**:首先对输入数据进行清洗、分词、编码,将其转换为模型能够理解的数字序列或张量形式。 2. **构建模型**:创建Transformer模型结构,包括嵌入层(将词或字符映射到密集向量)、多层自注意力块(处理序列之间的依赖)和前馈神经网络(FFN)模块。 3. **定义损失函数**:常用的损失函数有交叉熵损失,用于衡量模型预测与真实标签的差异。 4. **初始化权重**:随机或根据特定策略(如预训练模型的微调)初始化模型参数。 5. **前向传播**:将输入数据通过模型,计算出每个样本的预测结果。 6. **反向传播**:根据损失函数计算梯度,更新模型参数。通常使用优化器(如Adam、SGD)进行反向传播。 7. **训练循环**:多次迭代执行前向传播、反向传播和参数更新,直到达到预设的训练轮数或者验证集性能不再提升。 8. **评估**:在验证集上定期评估模型性能,例如计算准确率、F1分数等。 9. **超参数调整**:如果性能不佳,可能需要调整学习率、批量大小、模型结构等超参数。 10. **保存模型**:当模型在验证集上的表现满意后,将其保存以便于后续使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沧海之巅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值