基于复合优化加速算法研究实际问题

本文探讨了如何利用hybird.nesterov.accer方法解决实际问题。介绍了初始化输入数据,其中函数f(x)涉及多个cos和sin项的平方和。接着展示了复合优化算法的超参数,包括lk、tk和proxim选项。通过调用算法并绘制迭代图,证明即使在非凸函数情况下,该算法也能达到收敛效果,特别是在处理稀疏矩阵解时表现良好。
摘要由CSDN通过智能技术生成
import optimtool as oo
from optimtool.base import np, sp, plt
pip install optimtool>=2.5.0

加载hybird.nesterov.accer方法

import optimtool.hybrid as oh
nes_acc = oh.nesterov.accer

初始化输入数据

f ( x ) = ∑ i = 1 n ( ( n − ∑ j = 1 n cos ⁡ x j ) + i ( 1 − cos ⁡ x i ) − sin ⁡ x i ) 2 , x 0 = [ 0.2 , 0.2 , . . . , 0.2 ] f(x)=\sum_{i=1}^{n}((n-\sum_{j=1}^{n}\cos x_j)+i(1-\cos x_i)-\sin x_i)^2, x_0=[0.2, 0.2, ...,0.2] f(x)=i=1n((nj=1n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值