one-way ANOVA(analysis of variance) 单向方差分析

问题描述:在比较两组独立正态分布样本的均值时用t test,那么比较多组样本的均值呢?要用one-way ANOVA。
Note: 使用ANOVA时,要假定k个组的方差相同。如果k个组的方差并不相同,就不应该使用ANOVA,要分别对两组间用t检验。

当我们看到这种要同时比较多组样本的均值时,首先就要想到one-way ANOVA,然后再想想用此检验方法是否真的合适。比如下面的例子:

研究肺功能与吸烟的关系,以“用力中期呼出量(FEF)”作为指标,统计结果如下,

组号组名mean(FEF)SD(FEF)n
1NS(非吸烟者)3.780.79200
2PS(被动吸烟者)3.300.77200
3NI(非吸入吸烟者)3.320.8650
4LS(轻度吸烟者)3.230.78200
5MS(中度吸烟者)2.730.81200
6HS(重度吸烟者)2.590.82200

思考过程:
1,首先,6组的方差接近,没有理由认为6组方差不等,可以使用one-way ANOVA;
2,建立零假设:6组的平均值都相同;
备择假设:6组中至少有两组均值不等。
3,计算组间平方和(组间波动)、组内平方和(组内波动)。组间平方和越大,预示着不同组的差别越大,越倾向于备择假设成立;反之,p-value就越大,倾向于零假设成立。
Within SS = ∑ i = 1 k ∑ j = 1 n i ( y i j − y i ˉ ) 2 , 其 中 y i j 为 第 i 组 的 第 j 个 元 素 、 y i ˉ 为 第 i 组 的 平 均 值 \sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(y_{ij}-\bar{y_{i}})^{2},其中y_{ij}为第i组的第j个元素、\bar{y_{i}}为第i组的平均值 i=1kj=1ni(yijyiˉ)2yijijyiˉi
容易计算Within SS = ∑ i = 1 k ( n i − 1 ) s i 2 \sum_{i=1}^{k}(n_{i}-1)s_{i}^2 i=1k(ni1)si2
Between SS = ∑ i = 1 k ∑ j = 1 n i ( y i ˉ − y ˉ ˉ ) 2 , 其 中 y i ˉ 为 第 i 组 的 平 均 、 y ˉ ˉ 为 全 部 的 平 均 \sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(\bar{y_{i}}-\bar{\bar{y}})^2,其中\bar{y_{i}}为第i组的平均、\bar{\bar{y}}为全部的平均 i=1kj=1ni(yiˉyˉˉ)2yiˉiyˉˉ
容易计算Between SS = ∑ i = 1 k n i y i ˉ 2 − n y ˉ ˉ 2 \sum_{i=1}^{k}n_{i}\bar{y_{i}}^2-n\bar{\bar{y}}^2 i=1kniyiˉ2nyˉˉ2
4,构建检验统计量,书上说Between MS/Within MS服从F分布(Between MS = Between SS/(k-1),即Between SS除以对应自由度;Within MS = Within SS/(n-k),即Within SS除以剩下的自由度,总自由度为n-1)。
F统计量 = Between MS/Within MS(服从 F k − 1 , n − k F_{k-1,n-k} Fk1,nk分布)
5,进行统计推断。
精确p值为p = Pr( F k − 1 , n − k > F F_{k-1,n-k} > F Fk1,nk>F)

对上述例子进行计算:

Within MS = 184.38/5 = 36.875
Between MS = 663.87/1044 = 0.636
F = Between MS/Within MS = 58 ~ F 5 , 1044 F_{5, 1044} F5,1044

结论:p < 0.001,所以应该要拒绝原假设,即至少有两组的平均肺功能不同。

上面的例子到这里还没有完,很多情况下会关注到底哪些组之间有显著差别,有以下几种方式:

1,指定两组间比较的t检验(least significant difference, 即LSD法),此方法跟分别对两组间用t检验的区别是要用总体的标准差(即Within MS)代替两组的标准差进行t统计量的计算。

2,预先选取 l 1 l_{1} l1个组和 l 2 l_{2} l2个组进行比较。例如要比较吸入抽烟者和非抽烟者的肺功能,将上表三组抽烟者合并成一组去与非抽烟者比较。遇到的问题是在人群中轻度、中度和重度抽烟者的比例不是表中的1:1:1,而是1:7:2,此时要用到线性约束的估计和检验。

一个线性约束是值对某些组的均值做线性组合,而线性组合中的系数之和为0: L = ∑ i = 1 k c i y ˉ , 要 求 ∑ i = 1 k c i = 0 L = \sum_{i=1}^{k}c_{i}\bar{y},要求\sum_{i=1}^{k}c_{i} = 0 L=i=1kciyˉi=1kci=0

2.1 用线性约束表示非抽烟者和吸入式抽烟者为: L = y 1 ˉ − 0.1 y 2 ˉ − 0.7 y 3 ˉ − 0.2 y 4 ˉ L = \bar{y_{1}} -0.1\bar{y_{2}}-0.7\bar{y_{3}}-0.2\bar{y_{4}} L=y1ˉ0.1y2ˉ0.7y3ˉ0.2y4ˉ
2.2 设 μ L 为 线 性 约 束 L 的 理 论 均 值 , 则 建 立 的 假 设 检 验 如 下 : \mu_{L}为线性约束L的理论均值,则建立的假设检验如下: μL线L
H 0 : μ L = 0 对 H 1 : μ L ≠ 0 H_{0}: \mu_{L} = 0对H_{1}: \mu_{L} \neq 0 H0:μL=0H1:μL̸=0
2.3 由 V a r ( y i ˉ ) = s 2 / n i , 有 L 的 方 差 为 V a r ( L ) = s 2 ∑ i = 1 k c i 2 / n i Var(\bar{y_{i}}) = s^2/n_{i},有L的方差为Var(L) = s^2\sum_{i=1}^{k}c_{i}^2/n_{i} Var(yiˉ)=s2/niLVar(L)=s2i=1kci2/ni
2.4 计算统计量 t = L / s e ( L ) t = L/se(L) t=L/se(L)
2.5 进行统计推断
结论:易计算t = 14.69 ~ t 1044 t_{1044} t1044,p<0.001,抽烟者与非抽烟者肺功能有很大差别。

3,多重比较-Bonferroni法
3.1 此法考虑了多重假设检验,如果总共有k个组比较,则可能有 ( k 2 ) 个 两 组 比 较 \binom{k}{2}个两组比较 (2k),如果此时把每个两组比较的p-value设为0.05,则考虑所有组对时会有很大误差(小概率事件在多次重复实验中总会发生)。
3.2 记每个两组比较的显著性水平为 α ∗ \alpha^* α,E为至少有一个两组比较是统计显著性的事件。则Pr(E)称为实验的type 1 error,即假阳性率。下面我们要决定 α ∗ \alpha^* α值使得 P r ( E ) = α Pr(E)=\alpha Pr(E)=α
P r ( E ˉ ) = P r ( 没 有 一 个 两 组 比 较 具 有 显 著 差 异 ) = 1 − α Pr(\bar{E})=Pr(没有一个两组比较具有显著差异)=1-\alpha Pr(Eˉ)=Pr()=1α,
在每个两组比较独立的情况下有 P r ( E ˉ ) = ( 1 − α ∗ ) c , c = ( k 2 ) Pr(\bar{E})=(1-\alpha^*)^c,c=\binom{k}{2} Pr(Eˉ)=(1α)c,c=(2k).
则有 1 − α = ( 1 − α ∗ ) c ≈ 1 − c α ∗ 1-\alpha=(1-\alpha^*)^c\approx1-c\alpha^* 1α=(1α)c1cα
则有 α ∗ = α / ( k 2 ) \alpha^*=\alpha/\binom{k}{2} α=α/(2k),通常每个两组比较不可能都是统计独立的,所以 α ∗ \alpha^* α的合适值要大于 α / ( k 2 ) \alpha/\binom{k}{2} α/(2k),即Bonferroni是保守的。
3.3 接下来除了用 α ∗ 替 换 α \alpha^*替换\alpha αα,其它的检验操作和LSD一样。
Note: 在事先没有计划要比较特定的组且k较大时,建议使用多重比较法;在组数较小且仅对特定组感兴趣时,建议使用通常的t检验法(LSD法)。
4 线性约束下的多重比较-scheffe法
相比于2中的比较,此多重比较适用于没有事先确定要比较的线性组合,要对多重比较进行校正。
4.1 此方法的t统计量计算与2中一样:
t = L / s e ( L ) t = L/se(L) t=L/se(L)
4.2 进行统计推断:
t &gt; a 2 = ( k − 1 ) F k − 1 , n − k , 1 − α 或 t &lt; a 1 = − ( k − 1 ) F k − 1 , n − k , 1 − α 时 , 拒 绝 H 0 ; t &gt; a_{2}=\sqrt{(k-1)F_{k-1,n-k,1-\alpha}}或t&lt;a_{1}=-\sqrt{(k-1)F_{k-1,n-k,1-\alpha}}时,拒绝H_{0}; t>a2=(k1)Fk1,nk,1α t<a1=(k1)Fk1,nk,1α H0;
a 1 &lt; = t &lt; = a 2 时 , 接 受 H 0 。 a_{1}&lt;=t&lt;=a{2}时,接受H_{0}。 a1<=t<=a2H0其中k为组数,n为总数据数。
#######################################################

上面是用假设检验的方法对单向方差分析进行描述,下面我们用线性回归的方法对其进行描述。

上述的分析可用固定效应(相对于随机效应来说,随机效应只关心组内方差和组间方差哪个贡献大,而不关心具体的组;而固定效应要比较不同组均值的大小)的单向方差分析来表示:
y i j = μ + α i + e i j , y_{ij}=\mu+\alpha_{i}+e_{ij}, yij=μ+αi+eij
其 中 μ 为 常 数 , 代 表 所 有 组 数 据 混 合 后 的 均 值 ; 其中\mu为常数,代表所有组数据混合后的均值; μ
α i 为 第 i 组 的 常 数 , 代 表 第 i 组 的 均 值 与 所 有 数 据 均 值 的 差 异 ; \alpha_{i}为第i组的常数,代表第i组的均值与所有数据均值的差异; αiii e i j 为 随 机 误 差 , 均 数 为 0 且 方 差 为 σ 2 , 代 表 第 i 组 第 j 个 观 察 与 均 值 μ + α i 间 的 随 机 误 差 。 e_{ij}为随机误差,均数为0且方差为\sigma^2,代表第i组第j个观察与均值\mu+\alpha_{i}间的随机误差。 eij0σ2ijμ+αi

单向ANOVA与多重线性回归的关系:
建立模型:以非吸烟组为对照组, x 1 . . . x 5 分 别 对 应 着 被 动 吸 烟 、 非 吸 入 吸 烟 、 轻 度 吸 烟 、 中 度 吸 烟 和 重 度 吸 烟 。 x_{1}...x_{5}分别对应着被动吸烟、非吸入吸烟、轻度吸烟、中度吸烟和重度吸烟。 x1...x5
y = α + β 1 x 1 + β 2 x 2 + β 3 x 3 + β 4 x 4 + β 5 x 5 + e y=\alpha+\beta_{1}x_{1}+\beta_{2}x_{2}+\beta_{3}x_{3}+\beta_{4}x_{4}+\beta_{5}x_{5}+e y=α+β1x1+β2x2+β3x3+β4x4+β5x5+e,
对模型的解释:
x1 = 1 (属于被动吸烟组) or 0 (不属于) ;
x2 = 1 (属于非吸入吸烟组) or 0 (不属于) ;
x3 = 1 (属于轻度吸烟组) or 0 (不属于) ;
x4 = 1 (属于中度吸烟组) or 0 (不属于) ;
x5 = 1 (属于重度吸烟组) or 0 (不属于) ;
对照组,即非吸烟组,可以理解为y的平均值为 α \alpha α;
β i , i = 1...5 , 为 第 i 组 与 对 照 组 的 平 均 差 异 \beta_{i},i=1...5,为第i组与对照组的平均差异 βi,i=1...5,i
e为误差项,均值为0,方差为 σ 2 \sigma^2 σ2

1 假设要比较k个组的未知均数,此处组i中的观察值为正态分布,其均值和方差分别为 μ i = α + α i ( α i = β i x i ) , V a r = σ 2 \mu_i=\alpha+\alpha_{i} (\alpha_{i}=\beta_{i}x_{i}),Var=\sigma^2 μi=α+αi(αi=βixi)Var=σ2
2 H 0 : α i = 0 ; H 1 : 至 少 有 一 个 α i 不 为 0 H_{0}:\alpha_{i}=0;H_{1}:至少有一个\alpha_{i}不为0 H0:αi=0;H1:αi0
3 多重回归模型中的回归SS和残差SS对应着单向ANOVA中的组间SS和组内SS,F统计量和p-value都相同。
#######################################################

上面讨论是固定效应的单因素方差分析,下面来聊聊随机效应的单因素方差分析

一份调查妇女月经后期血样中雌二醇水平的统计结果如下:

重复1重复2重复间极差平均值
125.230.44.927.95
211.115.03.913.05
38.08.10.18.05
420.716.93.818.80
55.88.42.67.10

Note:抽取5个人,每个人有两份重复的血样。

提出问题:对于血样雌二醇的水平,研究同一个的波动和不同人之间的差异哪个大。
分析问题:对于上表,并不关心不同人的平均水平的差异,而是关心数据方差的来源,这就要用到随机效应的ANOVA模型。观察发现,不同人的平均值差别较大,标准差正比于均值,要使标准差独立于平均值,可以对原始测量值去对数。
建立模型:

y i j = μ + α i + e i j , i = 1 , 2 , . . . , k , j = 1 , 2 , . . . , n i y_{ij} = \mu + \alpha_{i} + e_{ij}, i = 1, 2, ..., k, j = 1, 2, ..., n_{i} yij=μ+αi+eij,i=1,2,...,k,j=1,2,...,ni
此处:
y i j 为 第 i 个 受 试 者 的 第 j 次 重 复 ( l n ( 血 液 雌 二 醇 水 平 ) y_{ij}为第i个受试者的第j次重复(ln(血液雌二醇水平) yijijln()
α i 为 受 试 者 之 间 差 异 的 随 机 变 量 , 服 从 N ( 0 , σ A 2 ) \alpha_{i}为受试者之间差异的随机变量,服从N(0, \sigma_{A}^2) αiN(0,σA2)
e i j 代 表 受 试 者 组 内 的 差 异 , 它 独 立 于 α i 且 独 立 于 其 它 e i j e_{ij}代表受试者组内的差异,它独立于\alpha_{i}且独立于其它e_{ij} eijαieij

  • 8
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值