酉矩阵(幺正矩阵、unitary matrix)

1,定义

如果一个n阶复数方阵U满足下列条件:
U † U = U U † = I n , 其 中 I n 为 n 阶 单 位 方 阵 , U † 为 U 的 共 轭 转 置 矩 阵 , U^\dagger U=UU^\dagger=I_n, 其中I_n为n阶单位方阵,U^\dagger为U的共轭转置矩阵, UU=UU=In,InnUU
则称U为酉矩阵。

2,性质

2.1 矩阵U为酉矩阵的充要条件是它的共轭转置矩阵等于其逆矩阵:
U † = U − 1 U^\dagger=U^{-1} U=U1

2.2 若酉矩阵的元素全是实数,则其为正交矩阵。

2.3 |det(U)| = 1

2.4 ∣ ∣ U x ∣ ∣ 2 = ∣ ∣ x ∣ ∣ 2 ||Ux||_2=||x||_2 Ux2=x2

2.5 若U为n阶方阵,则下列条件等价:
U是酉矩阵;
U † U^\dagger U为酉矩阵;
U的列向量构成的内积空间 C n 上 的 一 组 标 准 正 交 基 C^n上的一组标准正交基 Cn
U的行向量构成的内积空间 C n 上 的 一 组 标 准 正 交 基 C^n上的一组标准正交基 Cn

note: 内积空间是线性代数里的基本概念,它是指增加了额外结构的向量空间。这个额外的结构将一对向量与一个标量联系起来,从而容许我们正式讨论向量的长度和夹角,也为定义正交性提供了基础。内积空间是欧几里得空间的泛化(内积空间的内积对应着欧氏空间的点积)。

2.6 酉矩阵可以被分解为
U = V Σ V ∗ U=V\Sigma V^* U=VΣV,其中V是酉矩阵, Σ \Sigma Σ是主对角线上元素绝对值为1的对角阵。

note: 对角阵,指除了主对角线外,其它位置元素都为0的矩阵。

酉变换

酉变换(unitary transformation)是指酉空间V的等度量变换。
∀ α , β ∈ V , 满 足 条 件 ( σ ( α ) , σ ( β ) ) = ( α , β ) 的 线 性 变 换 σ 就 叫 做 酉 变 换 \forall \alpha, \beta \in V,满足条件(\sigma(\alpha), \sigma(\beta))=(\alpha, \beta)的线性变换\sigma就叫做酉变换 α,βV(σ(α),σ(β))=(α,β)线σ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值