【树状数组+主席树】BZOJ1901 [ZOJ2112]Dynamic Rankings

题面在这里

树套树第一题……

考虑没有修改(POJ 2104)的情况,就是经典的主席树了
其实就是一个静态的前缀和,利用容斥原理求区间信息

但是如果有修改操作呢?
不过是维护这个前缀和罢了。
当然有一个想法,就是修改时O(n)更新后面的所有位置(受此次修改的影响)
这样就太慢了,直接树状数组比较好。
树状数组的每一个单位都是一棵主席树,整个管辖范围的修改都记到它上面

修改操作就在树状数组上依次修改即可

询问的话……
需要把与其关联的一系列主席树都统计或者向左/右移动
所以需要开数组记录这些树

但是这道题在ZOJ上卡得比较紧,容易MLE
考虑初始的树状数组树是空的,把A[]一个一个加入太浪费空间(O(Nlog22N)
所以建立一个静态的主席树表示初始状态(O(Nlog2N)),
这样总复杂度就是O(Qlog22N)

代码(BZOJ 1901):

#include<cstdio>
#include<algorithm>
#define lowbit(x) ((x)&-(x))
#define fnd(x) (lower_bound(b+1,b+1+m,x)-b)
using namespace std;
const int maxn=10005,maxq=10005;
int tst,n,q,m,a[maxn],b[maxn+maxq],c[maxn];
struct Que{
    int t,l,r,k,bf;
}que[maxq];
struct node{
    node *l,*r;
    int s,L,R;
    node () {}
    node (int x,int y,int w): L(x),R(y),s(w) {}
    void pushup() {s=l->s+r->s;}
}nil,base[2000005];
typedef node* P_node;
P_node null,len,rot[maxn],Rot[maxn];
void Seg_T_init(){
    nil=node(0,0,0);null=&nil;
    null->l=null->r=null;len=base;
}
P_node newnode(int l,int r,int w){
    *len=node(l,r,w);return len++;
}
P_node build(int l,int r){
    P_node x=newnode(l,r,0);
    x->l=x->r=null;
    if (l==r) return x;
    int mid=l+r>>1;
    x->l=build(l,mid);x->r=build(mid+1,r);
    x->pushup(); return x;
}
P_node ist(P_node lst,int k,int d){
    P_node x=newnode(lst->L,lst->R,lst->s);
    x->l=lst->l; x->r=lst->r;
    if (x->L==x->R) {x->s+=d;return x;}
    int mid=x->L+x->R>>1;
    if (k<=mid) x->l=ist(lst->l,k,d);else
     x->r=ist(lst->r,k,d);
    x->pushup(); return x;
}
void add(int x,int w,int d){
    for (int i=x;i<=n;i+=lowbit(i))
     rot[i]=ist(rot[i],w,d);
}
P_node use[maxn];
int qry(P_node x,P_node y,int l,int r,int k){
    if (x->L==x->R) return b[x->L];
    int tem=y->l->s - x->l->s;
    for (int i=l;i;i-=lowbit(i)) tem-=use[i]->l->s;
    for (int i=r;i;i-=lowbit(i)) tem+=use[i]->l->s;
    if (k<=tem){
        for (int i=l;i;i-=lowbit(i)) use[i]=use[i]->l;
        for (int i=r;i;i-=lowbit(i)) use[i]=use[i]->l;
        return qry(x->l,y->l,l,r,k);
    }else{
        for (int i=l;i;i-=lowbit(i)) use[i]=use[i]->r;
        for (int i=r;i;i-=lowbit(i)) use[i]=use[i]->r;
        return qry(x->r,y->r,l,r,k-tem);
    }
}
void print(P_node x){
    if (x==null) return;
    print(x->l);
    if (x->L==x->R) printf("%d ",x->s);
    print(x->r);
}
inline int red(){
    int tot=0,f=1;char ch=getchar();
    while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=getchar();}
    while ('0'<=ch&&ch<='9') tot=tot*10+ch-48,ch=getchar();
    return tot*f;
}
int main(){
    tst=1;
    while (tst--){
        Seg_T_init();
        n=red(),q=red();
        for (int i=1;i<=n;i++) a[i]=b[i]=c[i]=red();
        b[0]=n;
        for (int i=1;i<=q;i++){
            char ch=getchar();while (ch<'A'||'Z'<ch) ch=getchar();
            if (ch=='Q'){
                que[i].t=0;que[i].l=red(),que[i].r=red(),que[i].k=red();
            }else{
                que[i].t=1;que[i].l=red(),que[i].k=red();
                que[i].bf=c[que[i].l]; c[que[i].l]=que[i].k;
                b[++b[0]]=que[i].k;
            }
        }
        sort(b+1,b+1+b[0]);
        m=unique(b+1,b+1+b[0])-b-1;
        rot[0]=Rot[0]=build(1,m);
        for (int i=1;i<=n;i++) rot[i]=rot[0],Rot[i]=ist(Rot[i-1],fnd(a[i]),1);
        for (int i=1;i<=q;i++)
         if (que[i].t) add(que[i].l,fnd(que[i].bf),-1),add(que[i].l,fnd(que[i].k),1);else{
            int l=que[i].l-1,r=que[i].r,k=que[i].k;
            for (int j=l;j;j-=lowbit(j)) use[j]=rot[j];
            for (int j=r;j;j-=lowbit(j)) use[j]=rot[j];
            printf("%d\n",qry(Rot[l],Rot[r],l,r,k));
         }
    }
    return 0;
}
发布了265 篇原创文章 · 获赞 450 · 访问量 21万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览