不得不说真是一道好题啊……
对于路径 x→y ,可以拆分为 x→lca 和 lca→y
同时注意到,对于点i在一条往上走的路径 x→y 上:
deepi+wi=deepx
反之:
deepi−wi=deepy−distx,y
维护一个两个桶 up,down ,那么某个点x的答案就是 up[deepi+wi]+down[deepi−wi]
然后就可以打标记了:对x,y分别打+标记,lca打两个-标记
DFS时遇到标记就在桶里增加值
注意要使打的标记只在对应的路径上生效,实际上应该记录x入栈前与入栈后桶的差值
还有,LCA的答案有可能算重复,需要注意一下
示例程序:
#include<cstdio>
#include<cmath>
#include<vector>
#define vit vector<int>::iterator
#define pb push_back
#include<algorithm>
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int red(){
int res=0,f=1;char ch=nc();
while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=nc();}
while ('0'<=ch&&ch<='9') res=res*10+ch-48,ch=nc();
return res*f;
}
const int maxn=300005,maxe=600005;
int n,q,lgn,up[maxe],down[maxe],ans[maxn],w[maxn];
int tot,son[maxe],nxt[maxe],lnk[maxn];
inline void add(int x,int y){
son[++tot]=y;nxt[tot]=lnk[x];lnk[x]=tot;
}
int dep[maxn],f[maxn][20];
void getdep(int x,int fa){
f[x][0]=fa;dep[x]=dep[fa]+1;
for (int j=lnk[x];j;j=nxt[j])
if (son[j]!=fa) getdep(son[j],x);
}
void DP(){
for (int j=1;j<=lgn;j++)
for (int i=1;i<=n;i++)
f[i][j]=f[f[i][j-1]][j-1];
}
inline int LCA(int x,int y){
if (dep[x]<dep[y]) swap(x,y);
for (int j=lgn;j>=0;j--)
if (dep[f[x][j]]>=dep[y]) x=f[x][j];
if (x==y) return x;
for (int j=lgn;j>=0;j--)
if (f[x][j]!=f[y][j]) x=f[x][j],y=f[y][j];
return f[x][0];
}
vector<int> a[2][maxn],b[2][maxn];
void dfs(int x,int fa){
int lu=up[dep[x]+w[x]],ld=down[dep[x]-w[x]+300000];
for (int j=lnk[x];j;j=nxt[j])
if (son[j]!=fa) dfs(son[j],x);
for (vit it=a[0][x].begin();it!=a[0][x].end();it++)
up[*it]++;
for (vit it=b[0][x].begin();it!=b[0][x].end();it++)
down[*it]++;
ans[x]+=up[dep[x]+w[x]]-lu + down[dep[x]-w[x]+300000]-ld;
for (vit it=a[1][x].begin();it!=a[1][x].end();it++)
up[*it]--;
for (vit it=b[1][x].begin();it!=b[1][x].end();it++)
down[*it]--;
}
int main(){
n=red(),q=red();lgn=log2(n);
for (int i=1,x,y;i<n;i++) x=red(),y=red(),add(x,y),add(y,x);
getdep(1,1);DP();
for (int i=1;i<=n;i++) w[i]=red();
while (q--){
int x=red(),y=red(),lca=LCA(x,y),t=dep[x]+dep[y]-2*dep[lca];
a[1][lca].pb(dep[x]),a[0][x].pb(dep[x]),
b[1][lca].pb(dep[y]-t+300000),b[0][y].pb(dep[y]-t+300000);
if (w[lca]==dep[x]-dep[lca]) ans[lca]--;
}
dfs(1,0);
for (int i=1;i<n;i++) printf("%d ",ans[i]);printf("%d",ans[n]);
return 0;
}