【LCA+打标记】BZOJ4719(UOJ#261) [Noip2016]天天爱跑步

题面在这里

还可以双倍经验

不得不说真是一道好题啊……

对于路径 xy ,可以拆分为 xlca lcay

同时注意到,对于点i在一条往上走的路径 xy 上:

deepi+wi=deepx

反之:

deepiwi=deepydistx,y

维护一个两个桶 up,down ,那么某个点x的答案就是 up[deepi+wi]+down[deepiwi]

然后就可以打标记了:对x,y分别打+标记,lca打两个-标记

DFS时遇到标记就在桶里增加值

注意要使打的标记只在对应的路径上生效,实际上应该记录x入栈前与入栈后桶的差值

还有,LCA的答案有可能算重复,需要注意一下

示例程序:

#include<cstdio>
#include<cmath>
#include<vector>
#define vit vector<int>::iterator
#define pb push_back
#include<algorithm>
using namespace std;
inline char nc(){
    static char buf[100000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int red(){
    int res=0,f=1;char ch=nc();
    while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=nc();}
    while ('0'<=ch&&ch<='9') res=res*10+ch-48,ch=nc();
    return res*f;
}

const int maxn=300005,maxe=600005;
int n,q,lgn,up[maxe],down[maxe],ans[maxn],w[maxn];
int tot,son[maxe],nxt[maxe],lnk[maxn];
inline void add(int x,int y){
    son[++tot]=y;nxt[tot]=lnk[x];lnk[x]=tot;
}
int dep[maxn],f[maxn][20];
void getdep(int x,int fa){
    f[x][0]=fa;dep[x]=dep[fa]+1;
    for (int j=lnk[x];j;j=nxt[j])
     if (son[j]!=fa) getdep(son[j],x);
}
void DP(){
    for (int j=1;j<=lgn;j++)
     for (int i=1;i<=n;i++)
      f[i][j]=f[f[i][j-1]][j-1];
}
inline int LCA(int x,int y){
    if (dep[x]<dep[y]) swap(x,y);
    for (int j=lgn;j>=0;j--)
     if (dep[f[x][j]]>=dep[y]) x=f[x][j];
    if (x==y) return x;
    for (int j=lgn;j>=0;j--)
     if (f[x][j]!=f[y][j]) x=f[x][j],y=f[y][j];
    return f[x][0];
}
vector<int> a[2][maxn],b[2][maxn];
void dfs(int x,int fa){
    int lu=up[dep[x]+w[x]],ld=down[dep[x]-w[x]+300000];
    for (int j=lnk[x];j;j=nxt[j])
     if (son[j]!=fa) dfs(son[j],x);
    for (vit it=a[0][x].begin();it!=a[0][x].end();it++)
     up[*it]++;
    for (vit it=b[0][x].begin();it!=b[0][x].end();it++)
     down[*it]++;
    ans[x]+=up[dep[x]+w[x]]-lu + down[dep[x]-w[x]+300000]-ld; 
    for (vit it=a[1][x].begin();it!=a[1][x].end();it++)
     up[*it]--;
    for (vit it=b[1][x].begin();it!=b[1][x].end();it++)
     down[*it]--;
}
int main(){
    n=red(),q=red();lgn=log2(n);
    for (int i=1,x,y;i<n;i++) x=red(),y=red(),add(x,y),add(y,x);
    getdep(1,1);DP();
    for (int i=1;i<=n;i++) w[i]=red();
    while (q--){
        int x=red(),y=red(),lca=LCA(x,y),t=dep[x]+dep[y]-2*dep[lca];
        a[1][lca].pb(dep[x]),a[0][x].pb(dep[x]),
        b[1][lca].pb(dep[y]-t+300000),b[0][y].pb(dep[y]-t+300000);
        if (w[lca]==dep[x]-dep[lca]) ans[lca]--;
    }
    dfs(1,0);
    for (int i=1;i<n;i++) printf("%d ",ans[i]);printf("%d",ans[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值