好题啊……
肯定会有这样的DP:
fi,j 表示终点是i,最大边权为j的最长路径
然而就算离散后还是 O(ne) 的
其实可以直接对边排序,边权的那一维就可以省去了
Tips:以后遇到边权递增的题目,第一想到对边排序
值得注意的是,边权相同的边必须同时转移,不能有先后修正的关系
示例程序:
#include<cstdio>
#include<algorithm>
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int red(){
int res=0,f=1;char ch=nc();
while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=nc();}
while ('0'<=ch&&ch<='9') res=res*10+ch-48,ch=nc();
return res*f;
}
const int maxn=50005;
int n,e,f[maxn];
struct edge{
int x,y,w;
bool operator<(const edge&b)const{
return w<b.w;
}
}a[maxn];
struct data{
int x,i;
data () {}
data (int _i,int _x):i(_i),x(_x) {}
}q[maxn];
int main(){
n=red(),e=red();
for (int i=1;i<=e;i++) a[i].x=red()+1,a[i].y=red()+1,a[i].w=red();
sort(a+1,a+1+e);
for (int i=1;i<=e;){
int j=i,len=0;
while (j<=e&&a[j].w==a[i].w){
q[++len]=data(a[j].x,f[a[j].y]+1);
q[++len]=data(a[j].y,f[a[j].x]+1);
j++;
}
i=j;
for (j=1;j<=len;j++) f[q[j].i]=max(f[q[j].i],q[j].x);
}
int ans=0;
for (int i=1;i<=n;i++) ans=max(ans,f[i]);
printf("%d",ans);
return 0;
}