题意分析
n个路口,路口间有至多一条边连接,道路是双向的,道路上一个边权。要改造其中的一部分道路,使其满足三个条件。
思路分析
要求
1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。(连通图)
2.在满足要求 1 的情况下,改造的道路尽量少。(n-1条边,因为要改的路尽可能少,已经连通了就不同再加边了)
3.在满足要求 1、2 的情况下,改造的那些道路中分值最大的道路分值尽量小。(权值要尽量小)
综上:本题是一个最小生成树的模板题。
注意事项
最小生成树的模板题,只要分析出来这是个最小生成树就行!
代码实现
#include<bits/stdc++.h>
using namespace std;
int n,m,k,fa[100009],ans,cnt,maxn;
struct Node{
int from,to,w;
}a[100009];
bool cmp(Node x,Node y)
{
return x.w<y.w;
}
int find(int x)
{
if(x==fa[x]) return x;
return fa[x]=find(fa[x]);
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=m;i++)
{
cin>>a[i].from>>a[i].to>>a[i].w;
}
sort(a+1,a+m+1,cmp);
for(int i=1;i<=m;i++)
{
int x=find(a[i].from);
int y=find(a[i].to);
if(x==y) continue;
else
{
//把他俩合并在一起
fa[x]=y;
cnt++;
maxn=max(a[i].w,maxn);
}
}
cout<<cnt<<" "<<maxn;
return 0;
}