深度学习【8】基于循环神经网络(RNN)的端到端(end-to-end)对话系统

本文介绍了基于循环神经网络(RNN)的端到端对话系统,与传统基于数据库的系统不同,RNN方法能产生更具创造性的响应。系统由编码器和解码器组成,编码器理解输入语句,解码器生成响应。在训练过程中,采用有监督学习。华为诺亚方舟实验室对此进行了更复杂的应用研究。
摘要由CSDN通过智能技术生成

注:本篇博客主要内容来自:A Neural Conversational Model,这篇论文。

http://blog.csdn.net/linmingan/article/details/51077837

        与传统的基于数据库匹配的对话\翻译系统不一样的是。基于RNN的end-to-end方法的对话\翻译系统,不仅不需要拥有庞大的数据库支持。而且该方法的对话\翻译结果有时候往往更具有创造性,不会那么死板。

        本文主要介绍一下基于RNN的对话系统的基本过程,关于RNN的知识这里不做介绍。因为翻译系统与对话系统都是序列到序列,只是翻译系统的输出语音不一样,所以基于RNN的翻译系统原理上与对话系统相差无几。

        基于RNN的对话系统由两个部分构成,分别为编码和解码器。编码器的作用是对一句输入语句进行编码,使得对话系统能够理解这句话的意思。而解码器是利用编码器输出的编码输出对话句子。编码器和解码器由两个RNN模型构成,编码器没有输出层,只有输入和隐藏层。而解码器有输出层。基于RNN的对话系统结构图如下:

        系统结构图解读:图中用户的输入为ABC(A,B,C可以看做三个不同词),对话系统的输出为WXYZ。编码器:左边没有输出的RNN是一个编码器&

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值