注:本篇博客主要内容来自:A Neural Conversational Model,这篇论文。
http://blog.csdn.net/linmingan/article/details/51077837
与传统的基于数据库匹配的对话\翻译系统不一样的是。基于RNN的end-to-end方法的对话\翻译系统,不仅不需要拥有庞大的数据库支持。而且该方法的对话\翻译结果有时候往往更具有创造性,不会那么死板。
本文主要介绍一下基于RNN的对话系统的基本过程,关于RNN的知识这里不做介绍。因为翻译系统与对话系统都是序列到序列,只是翻译系统的输出语音不一样,所以基于RNN的翻译系统原理上与对话系统相差无几。
基于RNN的对话系统由两个部分构成,分别为编码和解码器。编码器的作用是对一句输入语句进行编码,使得对话系统能够理解这句话的意思。而解码器是利用编码器输出的编码输出对话句子。编码器和解码器由两个RNN模型构成,编码器没有输出层,只有输入和隐藏层。而解码器有输出层。基于RNN的对话系统结构图如下:
系统结构图解读:图中用户的输入为ABC(A,B,C可以看做三个不同词),对话系统的输出为WXYZ。编码器:左边没有输出的RNN是一个编码器&