http://blog.csdn.net/linmingan/article/details/50958304
循环神经网络的反向传播算法其实只是BP算法的一个简单变体而已。
首先我们先看看循环神经网络的前向传播算法:
需要注意的是,该RNN中前一时刻到当前时刻只有一个权重矩阵,该权重矩阵与时间并没有什么关系。整个前向传播算法与BP网络的前向传播算法的差别是多了一个前一时刻隐藏层的信息而已。在我们这边的前向传播算法可能与大家平时看到的会有点出入,因为这个前向传播算法将传播过程中的各个阶段都拆分开来表示。在进入激活函数前先用额外的两个变量表示,分别是进入隐藏层激活函数e前的和进入输出层激活函数g前的。进行这样的拆分是为了更好的实现反向传播算法,即链式求导法则。
RNN的前向传播算法是以时间的推移进行的,其实就是一些时序上的