深度学习【5】循环神经网络(RNN)反向传播算法(BPTT)理解

本文介绍了循环神经网络RNN的前向传播算法及其与传统BP网络的区别,并详细解析了BPTT(Backpropagation Through Time)反向传播算法的实现过程,强调了在时间序列上的误差如何通过链式法则传播,以及参数更新的特点。
摘要由CSDN通过智能技术生成

http://blog.csdn.net/linmingan/article/details/50958304

循环神经网络的反向传播算法其实只是BP算法的一个简单变体而已。

首先我们先看看循环神经网络的前向传播算法:

需要注意的是,该RNN中前一时刻到当前时刻只有一个权重矩阵,该权重矩阵与时间并没有什么关系。整个前向传播算法与BP网络的前向传播算法的差别是多了一个前一时刻隐藏层的信息而已。在我们这边的前向传播算法可能与大家平时看到的会有点出入,因为这个前向传播算法将传播过程中的各个阶段都拆分开来表示。在进入激活函数前先用额外的两个变量表示,分别是进入隐藏层激活函数e前的和进入输出层激活函数g前的。进行这样的拆分是为了更好的实现反向传播算法,即链式求导法则。

RNN的前向传播算法是以时间的推移进行的,其实就是一些时序上的

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值