http://blog.csdn.net/linmingan/article/details/50958304
循环神经网络的反向传播算法其实只是BP算法的一个简单变体而已。
首先我们先看看循环神经网络的前向传播算法:
需要注意的是,该RNN中前一时刻到当前时刻只有一个权重矩阵,该权重矩阵与时间并没有什么关系。整个前向传播算法与BP网络的前向传播算法的差别是多了一个前一时刻隐藏层的信息
而已。在我们这边的前向传播算法可能与大家平时看到的会有点出入,因为这个前向传播算法将传播过程中的各个阶段都拆分开来表示。在进入激活函数前先用额外的两个变量表示,分别是进入隐藏层激活函数e前的
和进入输出层激活函数g前的
。进行这样的拆分是为了更好的实现反向传播算法,即链式求导法则。
RNN的前向传播算法是以时间的推移进行的,其实就是一些时序上的

本文介绍了循环神经网络RNN的前向传播算法及其与传统BP网络的区别,并详细解析了BPTT(Backpropagation Through Time)反向传播算法的实现过程,强调了在时间序列上的误差如何通过链式法则传播,以及参数更新的特点。
最低0.47元/天 解锁文章
反向传播算法(BPTT)理解&spm=1001.2101.3001.5002&articleId=50958304&d=1&t=3&u=b037717aae5f473bb7f4594637caf7ba)
1171

被折叠的 条评论
为什么被折叠?



