论文:Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration
这篇论文不是原始的point-to-plane ICP,只是对线性最小二乘法优化point-to-plane 损失函数的推导。
point-to-plane会比point-to-point收敛的更快,但是对point-to-plane的优化是一个非线性问题,速度比较慢。不过幸运的是,我们可以用线性优化来近似。
目标函数
point-to-plane的损失函数是最小化源顶点到目标顶点所在的面的距离平方:
其中,s为源顶点,d为目标顶点,n为目标顶点的法向量,M和 Mopt M o p t 是一个4*4的3D刚体变换矩阵。
3D刚体变换M是由旋转和平移构成的:
其中:

要最小化point-to-plane目标函数,只有6个参数: α,β,γ,t

本文探讨了线性最小二乘法在优化point-to-plane ICP表面配准损失函数中的应用。尽管point-to-plane方法比point-to-point更快收敛,但其优化过程是非线性的。通过在角度接近零的线性近似条件下,可以简化3D刚体变换,进而将目标函数转化为可使用SVD求解的线性方程组。
最低0.47元/天 解锁文章
1857

被折叠的 条评论
为什么被折叠?



