深度学习算法之YOLOv2

YOLOv2在YOLO的基础上进行了多方面改进,如批量规范化(Batch Normalization)、高分辨率预训练、GoogLeNet为基础的新网络、Anchor Boxes优化、维度聚类等,提升了目标检测的精度和速度。通过多尺度训练和数据增广,YOLOv2在ImageNet和COCO数据集上表现出色,实现了高效且准确的检测效果。
摘要由CSDN通过智能技术生成

一. 久违的新版本

       YOLO 问世已久,不过风头被SSD盖过不少,原作者自然不甘心,YOLO v2 的提出给我们带来了什么呢?

       先看一下其在 v1的基础上做了哪些改进,直接引用作者的实验结果了:


      条目不少,好多Trick,我们一个一个来看:

 A)Batch Normalization(批量规范化)

       先建立这样一个观点: 对数据进行预处理(统一格式、均衡化、去噪等)能够大大提高训练速度,提升训练效果。

       批量规范化  正是基于这个假设的实践,对每一层输入的数据进行加工。示意图:


       Batch Normalization,简称 BN,由Google提出,是指对数据的 归一化、规范化、正态化。BN 作为近几年最火爆的Trick之一,主流的CNN都已集成。

       该方法的提出基于以下背景:

1)神经网络每层输入的分布总是发生变化,通过标准化上层输出,均衡输入数据分布,加快训练速度;

      可以设置较大的学习率和衰减,而不用去care初始参数,BN总能快速收敛,调参狗的福音

2)通过规范化输入,降低激活函数在特定输入区间达到饱和状态的概率,避免 gradient vanishing 问题;

      举个例子:0.95^64 ≈ 0.0375    计算累积会产生数据偏离中心,导致误差的放大或缩小

3)输入规范化对应样本正则化,在一定程度上可以替代 Drop Out;

      Drop Out的比例也可以被无视了,全自动的节奏。

       BN 的做法是 在卷积池化之后,激活函数之前,对每个数据输出进行规范化(均值为 0,方差为 1)


       公式很简单,第一部分是 Batch内数据归一化(其中 E为Batch均值,Var为方差),Batch数据近似代表了整体训练数据。

       第二部分是亮点,即引入 附加参数 γ 和 β(Scale & Shift࿰

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值