Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematic

 

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index
Interactive Entries
Random Entry
New in MathWorld

MathWorld Classroom

About MathWorld
Contribute to MathWorld
Send a Message to the Team

MathWorld Book

Wolfram Web Resources »

13,172 entries
Last updated: Mon Jul 29 2013

Created, developed, and nurtured by Eric Weissteinat Wolfram Research

Geometry > Plane Geometry > Circles >

Geometry > Curves > Plane Curves > Conic Sections >

Geometry > Curves > Plane Curves > Polar Curves >

More...

 

Circle

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld ClassroomCirclePi

A circle is the set of points in a plane that are equidistant from a given point O. The distance r from the center is called the radius, and the point O is called the center. Twice the radius is known as the diameter d=2r. The angle a circle subtends from its center is a full angle, equal to 360 degrees or 2pi radians.

A circle has the maximum possible area for a given perimeter, and the minimum possible perimeter for a given area.

The perimeter C of a circle is called the circumference, and is given by

C=pid=2pir.

(1)

This can be computed using calculus using the formula for arc length in polar coordinates,

C=int_0^(2pi)sqrt(r^2+((dr)/(dtheta))^2)dtheta,

(2)

but since r(theta)=r, this becomes simply

C=int_0^(2pi)rdtheta=2pir.

(3)

The circumference-to-diameter ratio C/d for a circle is constant as the size of the circle is changed (as it must be since scaling a plane figure by a factor sincreases its perimeter by s), and d also scales by s. This ratio is denoted pi (pi), and has been proved transcendental.

CircleAreaStrips

Knowing C/d, the area of the circle can be computed either geometrically or using calculus. As the number of concentric strips increases to infinity as illustrated above, they form a triangle, so

A=1/2(2pir)r=pir^2.

(4)

This derivation was first recorded by Archimedes in Measurement of a Circle (ca. 225 BC).

CircleAreaWedges

If the circle is instead cut into wedges, as the number of wedges increases to infinity, a rectangle results, so

A=(pir)r=pir^2.

(5)

From calculus, the area follows immediately from the formula

A=int_0^(2pi)dthetaint_0^rrdr=(2pi)(1/2r^2)=pir^2,

(6)

again using polar coordinates.

A circle can also be viewed as the limiting case of a regular polygon with inradius r and circumradius R as the number of sides n approaches infinity (a figure technically known as an apeirogon). This then gives the circumference as

C=lim_(n->infty)2rntan(pi/n)=2pir

(7)

=lim_(n->infty)2Rnsin(pi/n)=2piR,

(8)

and the area as

A=lim_(n->infty)nr^2tan(pi/n)=pir^2

(9)

=lim_(n->infty)1/2nR^2sin((2pi)/n)=piR^2,

(10)

which are equivalently since the radii r and R converge to the same radius as n->infty.

Unfortunately, geometers and topologists adopt incompatible conventions for the meaning of "n-sphere," with geometers referring to the number of coordinates in the underlying space and topologists referring to the dimension of the surface itself (Coxeter 1973, p. 125). As a result, geometers call the circumference of the usual circle the 2-sphere, while topologists refer to it as the 1-sphere and denote it S^1.

The circle is a conic section obtained by the intersection of a cone with a plane perpendicular to the cone's symmetry axis. It is also a Lissajous curve. A circle is the degenerate case of an ellipse with equal semimajor and semiminor axes (i.e., with eccentricity 0). The interior of a circle is called a disk. The generalization of a circle to three dimensions is called a sphere, and to n dimensions for n>=4 a hypersphere.

The region of intersection of two circles is called a lens. The region of intersection of three symmetrically placed circles (as in a Venn diagram), in the special case of the center of each being located at the intersection of the other two, is called a Reuleaux triangle.

In Cartesian coordinates, the equation of a circle of radius a centered on (x_0,y_0) is

(x-x_0)^2+(y-y_0)^2=a^2.

(11)

In pedal coordinates with the pedal point at the center, the equation is

pa=r^2.

(12)

The circle having P_1P_2 as a diameter is given by

(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0.

(13)

The parametric equations for a circle of radius a can be given by

x=acost

(14)

y=asint.

(15)

The circle can also be parameterized by the rational functions

x=(1-t^2)/(1+t^2)

(16)

y=(2t)/(1+t^2),

(17)

but an elliptic curve cannot.

CircleNormalTangent

The plots above show a sequence of normal and tangent vectors for the circle.

The arc length scurvature kappa, and tangential angle phi of the circle with radius a represented parametrically by (◇) and (◇) are

s(t)=at

(18)

kappa(t)=1/a

(19)

phi(t)=t/a.

(20)

The Cesàro equation is

kappa=1/a.

(21)

In polar coordinates, the equation of the circle has a particularly simple form.

r=a

(22)

is a circle of radius a centered at origin,

r=2acostheta

(23)

is circle of radius a centered at (a,0), and

r=2asintheta

(24)

is a circle of radius a centered on (0,a).

The equation of a circle passing through the three points (x_i,y_i) for i=1, 2, 3 (the circumcircle of the triangle determined by the points) is

|x^2+y^2 x y 1; x_1^2+y_1^2 x_1 y_1 1; x_2^2+y_2^2 x_2 y_2 1; x_3^2+y_3^2 x_3 y_3 1|=0.

(25)

The center and radius of this circle can be identified by assigning coefficients of a quadratic curve

ax^2+cy^2+dx+ey+f=0,

(26)

where a=c and b=0 (since there is no xy cross term). Completing the square gives

a(x+d/(2a))^2+a(y+e/(2a))^2+f-(d^2+e^2)/(4a)=0.

(27)

The center can then be identified as

x_0=-d/(2a)

(28)

y_0=-e/(2a)

(29)

and the radius as

r=sqrt((d^2+e^2)/(4a^2)-f/a),

(30)

where

a=|x_1 y_1 1; x_2 y_2 1; x_3 y_3 1|

(31)

d=-|x_1^2+y_1^2 y_1 1; x_2^2+y_2^2 y_2 1; x_3^2+y_3^2 y_3 1|

(32)

e=|x_1^2+y_1^2 x_1 1; x_2^2+y_2^2 x_2 1; x_3^2+y_3^2 x_3 1|

(33)

f=-|x_1^2+y_1^2 x_1 y_1; x_2^2+y_2^2 x_2 y_2; x_3^2+y_3^2 x_3 y_3|.

(34)

Four or more points which lie on a circle are said to be concyclic. Three points are trivially concyclic since three noncollinear points determine a circle.

In trilinear coordinates, every circle has an equation of the form

(lalpha+mbeta+ngamma)(aalpha+bbeta+cgamma)+k(abetagamma+bgammaalpha+calphabeta)=0

(35)

with k!=0 (Kimberling 1998, p. 219).

The center alpha_0:beta_0:gamma_0 of a circle given by equation (35) is given by

alpha_0=l+kcosA-ncosB-mcosC

(36)

beta_0=m-ncosA+kcosB-lcosC

(37)

gamma_0=n-mcosA-lcosB+kcosC

(38)

(Kimberling 1998, p. 222).

In exact trilinear coordinates (alpha,beta,gamma), the equation of the circle passing through three noncollinear points with exact trilinear coordinates (alpha_1,beta_1,gamma_1)(alpha_2,beta_2,gamma_2), and (alpha_3,beta_3,gamma_3) is

|abetagamma+bgammaalpha+calphabeta alpha beta gamma; abeta_1gamma_1+bgamma_1alpha_1+calpha_1beta_1 alpha_1 beta_1 gamma_1; abeta_2gamma_2+bgamma_2alpha_2+calpha_2beta_2 alpha_2 beta_2 gamma_2; abeta_3gamma_3+bgamma_3alpha_3+calpha_3beta_3 alpha_3 beta_3 gamma_3|=0

(39)

(Kimberling 1998, p. 222).

An equation for the trilinear circle of radius R with center alpha_0:beta_0:gamma_0 is given by Kimberling (1998, p. 223).

SEE ALSO:Adams' CircleApeirogonArcBlaschke's TheoremBrahmagupta's FormulaBrocard CircleCasey's TheoremCentral CircleCevian CircleChordCircle EvoluteCircle InscribingCircle InvoluteCircle-Line IntersectionCircle Parallel CurvesCircle PowerCircumcircleCircumferenceClifford's Circle TheoremClosed DiskConcentric CirclesCosine CircleCotes Circle PropertyDiameterDiskDroz-Farny CirclesEllipseEuler Triangle Formula,ExcirclesExcosine CircleEyeball TheoremFeuerbach's TheoremFirst Lemoine CircleFive Disks ProblemFlower of LifeFord CircleFuhrmann Circle,Gershgorin Circle TheoremHart CircleIncircleInversive DistanceKinney's SetLensLester CircleLissajous CurveMagic CirclesMalfatti CirclesMcCay CirclesMidcircleMiquel Five Circles TheoremMonge's Circle TheoremNeuberg CirclesNine-Point CircleOpen DiskParry CirclePiPoint CirclePolar CirclePrime CirclePseudocirclePtolemy's TheoremPurser's TheoremRadical LineRadiusReuleaux TriangleSeed of LifeSeifert CircleSemicircle,Seven Circles TheoremSimilitude CircleSquircleSix Circles TheoremSoddy CirclesSphereSpieker CircleTaylor CircleTucker CirclesUnit Circle,Venn DiagramVillarceau CirclesYin-Yang REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 125 and 197, 1987.

Casey, J. "The Circle." Ch. 3 in A Treatise on the Analytical Geometry of the Point, Line, Circle, and Conic Sections, Containing an Account of Its Most Recent Extensions, with Numerous Examples, 2nd ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 96-150, 1893.

Coolidge, J. L. A Treatise on the Geometry of the Circle and Sphere. New York: Chelsea, 1971.

Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 74-75, 1996.

Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.

Coxeter, H. S. M. and Greitzer, S. L. "Some Properties of the Circle." Ch. 2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 27-50, 1967.

Dunham, W. "Archimedes' Determination of Circular Area." Ch. 4 in Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 84-112, 1990.

Eppstein, D. "Circles and Spheres." http://www.ics.uci.edu/~eppstein/junkyard/sphere.html.

Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, p. 1, 1999.

Kern, W. F. and Bland, J. R. Solid Mensuration with Proofs, 2nd ed. New York: Wiley, p. 3, 1948.

Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.

Lachlan, R. "The Circle." Ch. 10 in An Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 148-173, 1893.

Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 65-66, 1972.

MacTutor History of Mathematics Archive. "Circle." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Circle.html.

Pappas, T. "Infinity & the Circle" and "Japanese Calculus." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 68 and 139, 1989.

Pedoe, D. Circles: A Mathematical View, rev. ed. Washington, DC: Math. Assoc. Amer., 1995.

Yates, R. C. "The Circle." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 21-25, 1952.

CITE THIS AS:

Weisstein, Eric W. "Circle." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Circle.html

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computable Document Format »

The format that makes Demonstrations (and any information) easy to share and interact with.

STEM initiative »

Programs & resources for educators, schools & students.

Computerbasedmath.org »

Join the initiative for modernizing math education.

 Contact the MathWorld Team© 1999-2013 Wolfram Research, Inc. | Terms of Use
THINGS TO TRY:

circle

5th hexagonal number

code 506119 k=4

Wolfram Demonstrations Project
Area between a Line and the Graph of a FunctionArea between a Line and the Graph of a Function

Abraham Gadalla

How Area Changes with DiameterHow Area Changes with Diameter

Sarah Lichtblau

Problems on Circles XIII: Common Area of Two CirclesProblems on Circles XIII: Common Area of Two Circles

Jaime Rangel-Mondragon

Problems on Circles X: Tangent Circles Generate EllipsesProblems on Circles X: Tangent Circles Generate Ellipses

Jaime Rangel-Mondragon

One software to rule them all. Mathematica.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。下面详细介绍C语言的基本概念和语法。 1. 变量和数据类型 在C语言中,变量用于存储数据,数据类型用于定义变量的类型和范围。C语言支持多种数据类型,包括基本数据类型(如int、float、char等)和复合数据类型(如结构体、联合等)。 2. 运算符 C语言中常用的运算符包括算术运算符(如+、、、/等)、关系运算符(如==、!=、、=、<、<=等)、逻辑运算符(如&&、||、!等)。此外,还有位运算符(如&、|、^等)和指针运算符(如、等)。 3. 控制结构 C语言中常用的控制结构包括if语句、循环语句(如for、while等)和switch语句。通过这些控制结构,可以实现程序的分支、循环和多路选择等功能。 4. 函数 函数是C语言中用于封装代码的单元,可以实现代码的复用和模块化。C语言中定义函数使用关键字“void”或返回值类型(如int、float等),并通过“{”和“}”括起来的代码块来实现函数的功能。 5. 指针 指针是C语言中用于存储变量地址的变量。通过指针,可以实现对内存的间接访问和修改。C语言中定义指针使用星号()符号,指向数组、字符串和结构体等数据结构时,还需要注意数组名和字符串常量的特殊性质。 6. 数组和字符串 数组是C语言中用于存储同类型数据的结构,可以通过索引访问和修改数组中的元素。字符串是C语言中用于存储文本数据的特殊类型,通常以字符串常量的形式出现,用双引号("...")括起来,末尾自动添加'\0'字符。 7. 结构体和联合 结构体和联合是C语言中用于存储不同类型数据的复合数据类型。结构体由多个成员组成,每个成员可以是不同的数据类型;联合由多个变量组成,它们共用同一块内存空间。通过结构体和联合,可以实现数据的封装和抽象。 8. 文件操作 C语言中通过文件操作函数(如fopen、fclose、fread、fwrite等)实现对文件的读写操作。文件操作函数通常返回文件指针,用于表示打开的文件。通过文件指针,可以进行文件的定位、读写等操作。 总之,C语言是一种功能强大、灵活高效的编程语言,广泛应用于各种领域。掌握C语言的基本语法和数据结构,可以为编程学习和实践打下坚实的基础。
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。下面详细介绍C语言的基本概念和语法。 1. 变量和数据类型 在C语言中,变量用于存储数据,数据类型用于定义变量的类型和范围。C语言支持多种数据类型,包括基本数据类型(如int、float、char等)和复合数据类型(如结构体、联合等)。 2. 运算符 C语言中常用的运算符包括算术运算符(如+、、、/等)、关系运算符(如==、!=、、=、<、<=等)、逻辑运算符(如&&、||、!等)。此外,还有位运算符(如&、|、^等)和指针运算符(如、等)。 3. 控制结构 C语言中常用的控制结构包括if语句、循环语句(如for、while等)和switch语句。通过这些控制结构,可以实现程序的分支、循环和多路选择等功能。 4. 函数 函数是C语言中用于封装代码的单元,可以实现代码的复用和模块化。C语言中定义函数使用关键字“void”或返回值类型(如int、float等),并通过“{”和“}”括起来的代码块来实现函数的功能。 5. 指针 指针是C语言中用于存储变量地址的变量。通过指针,可以实现对内存的间接访问和修改。C语言中定义指针使用星号()符号,指向数组、字符串和结构体等数据结构时,还需要注意数组名和字符串常量的特殊性质。 6. 数组和字符串 数组是C语言中用于存储同类型数据的结构,可以通过索引访问和修改数组中的元素。字符串是C语言中用于存储文本数据的特殊类型,通常以字符串常量的形式出现,用双引号("...")括起来,末尾自动添加'\0'字符。 7. 结构体和联合 结构体和联合是C语言中用于存储不同类型数据的复合数据类型。结构体由多个成员组成,每个成员可以是不同的数据类型;联合由多个变量组成,它们共用同一块内存空间。通过结构体和联合,可以实现数据的封装和抽象。 8. 文件操作 C语言中通过文件操作函数(如fopen、fclose、fread、fwrite等)实现对文件的读写操作。文件操作函数通常返回文件指针,用于表示打开的文件。通过文件指针,可以进行文件的定位、读写等操作。 总之,C语言是一种功能强大、灵活高效的编程语言,广泛应用于各种领域。掌握C语言的基本语法和数据结构,可以为编程学习和实践打下坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值