在STM32中使用DSP库

本文介绍了STM32F407使用DSP库的软件和硬件环境,以及具体配置步骤。软件环境为STM32CubeMX和Keil5,硬件为STM32F407。详细说明了用STM32CubeMX生成Keil5工程,在Keil 5中添加DSP库、配置工程选项,最后添加头文件即可使用DSP库,还给出官方HAL库中使用例程的位置。

软件环境:STM32CubeMX、Keil5
硬件环境:STM32F407


1.使用STM32CubeMX生成Keil5工程
注意:点击Project -> Settings打开工程设置窗口,点击Code Generator选项卡,在STM32Cube Firmware Library Package中选择Copy all used libraries into the project folder。
 

2.打开并配置Keil 5工程
(1)打开keil 5工程
(2)添加DSP库到工程中
若使用的是STM32CubeMX生成的工程,DSP库文件就在工程目录中,位于.\Drivers\CMSIS\Lib\ARM,里面有4个文件:
 
注:‘b’表示大端格式(Big Endian),‘l’表示小端格式(Little Endian),‘f’表示带浮点数。
我们目前使用的硬件平台是STM32F407系列,它带有FPU,同时使用的是小端格式,因此使用arm_cortexM4lf_math.lib,将它添加到工程中。
(3)点击 Project -> Options for Target,打开工程选项界面,点击Target选项卡,在Code Generation区域的Floating Point Hardware中选择Single Precision(单精度)。
 
点击C/C++选项卡,在Preprocessor Symbols区域的Define中添加如下内容:
ARM_MATH_CM4,__TARGET_FPU_VFP,__FPU_PRESENT=1
ARM_MATH_CM4表示在CM4中使用MATH库
__TARGET_FPU_VFP表示在目标设备中使用FPU
__FPU_PRESENT=1表示开启FPU,这个宏其实在stm32f407xx.h中有定义时,但是它并没有在core_cm4.h中起作用,在编译的时候会报错,应该是跟文件的编译顺序有关系,因此为了正常编译,在这里添加它。
(4)使用DSP库
在相应的.c文件中添加头文件:arm_math.h、arm_const_structs.h即可使用。
注:在官方的HAL库中有DSP库相关的使用例程,位于
C:\Users\Administrator\STM32Cube\Repository\STM32Cube_FW_F4_V1.21.0\Drivers\CMSIS\DSP_Lib\Examples(这个是我的目录)

### 关于 STM32 DSP 开发的相关资料 STM32 是一种广泛应用于嵌入式系统的微控制器,其部分型号集成了数字信号处理器 (DSP) 功能单元,用于高效执行复杂的数学运算和信号处理算法。以下是关于 STM32 DSP 开发的一些重要知识点: #### 1. 支持 DSPSTM32 型号 并非所有的 STM32 系列都具备完整的 DSP 指令集支持。通常情况下,带有 Cortex-M4 或 Cortex-M7 内核的 STM32 微控制器才具有专门的 DSP 协处理器功能[^2]。这些内核提供了单精度浮点运算单元 (FPU),以及优化后的 MAC(Multiply-Accumulate)指令。 例如: - **STM32F4 系列**:基于 ARM Cortex-M4 内核,配备 FPU 和 DSP 扩展指令。 - **STM32H7 系列**:基于更强大的 ARM Cortex-M7 内核,性能更高,适合复杂实时信号处理应用。 #### 2. STM32 DSP 的支持 为了简化开发者的工作流程,ST 官方提供了一个名为 `CMSIS-DSP` 的,该包含了大量经过高度优化的 DSP 函数实现。这些函数涵盖了滤波器设计、FFT 计算、矩阵运算等多个领域。通过使用 CMSIS-DSP ,开发者无需手动编写底层汇编代码即可完成高效的信号处理任务[^1]。 具体而言,CMSIS-DSP 提供的功能包括但不限于以下几种: - FIR/IIR 数字滤波器的设计与实现; - FFT/IFFT 变换及其逆变换; - 各种统计分析工具如均值计算、标准差估计等; - 复杂向量操作如加法减法乘除等基础线性代数运算; #### 3. 浮点数 vs 定点数的选择 当涉及到数值密集型的应用场景时,合理选择数据表示形式至关重要。虽然现代 STM32 控制器普遍配备了硬件级浮点运算能力,但在某些特定条件下仍然可能需要考虑采用定点数来代替浮点数以获得更好的效率表现[^4]。这是因为即使存在专用加速电路的情况下,处理 double 类型的数据仍可能导致不必要的开销增加。 因此,在实际项目规划阶段就应该仔细权衡两者之间的利弊关系,并据此做出最佳决策。 #### 4. 实际应用场景举例说明 下面给出几个典型的利用 STM32 进行图像或者音频等领域内的数字信号处理的例子: ##### 图像处理方面 假设我们需要构建一套简易的人脸识别系统,则可以通过如下步骤来进行初步尝试: ```c #include "arm_math.h" // 初始化变量... float inputImage[IMAGE_SIZE]; float outputFeatureMap[FILTERED_IMAGE_SIZE]; void process_image() { arm_fir_init(...); arm_fir_process(...,inputImage,outputFeatureMap,...); } ``` 上述片段展示了如何调用 CMSIS-DSP 中预定义好的有限脉冲响应(FIR)过滤方法对原始图片像素值序列做卷积操作从而提取特征图谱的过程。 ##### 音频处理方向 另一个常见需求可能是录制一段语音样本之后对其进行降噪处理后再播放出来。这里可以借助快速傅里叶转换(FFT)技术分离不同频率成分进而达到目的效果。 ```c #define SAMPLE_RATE 44100 int main(){ float audioBuffer[SAMPLE_COUNT]; while(true){ record_audio(audioBuffer,SAMPLE_COUNT); // Perform noise reduction using spectral subtraction technique. apply_spectral_subtraction(&audioBuffer); play_sound(audioBuffer,SAMPLE_RATE); } } void apply_spectral_subtraction(float *data){ complex_float spectrum[SPECTRUM_LENGTH]; arm_rfft_fast_instance_f32 fftInstance; arm_cfft_radix4_instance_f32 cfftInstance; arm_rfft_fast_init_f32(&fftInstance,SPECTRUM_LENGTH); arm_cfft_radix4_init_f32(&cfftInstance,SPECTRUM_LENGTH>>1,ARM_CFFT_FORWARD); arm_rfft_fast_f32(&fftInstance,data,spectrum,sizeof(spectrum)/sizeof(*spectrum)); perform_noise_reduction_on_spectrum(spectrum); arm_cfft_radix4_f32(&cfftInstance,(float*)spectrum,SPECTRUM_LENGTH>>1,ARM_CFFT_INVERSE); } ``` 此代码段演示了怎样运用递归快速傅立叶变化(RFFT)配合复数离散傅立叶变换成(CFFT)共同作用下把时间域上的声音讯号映射至频率空间以便后续实施噪声削减策略。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值