如何预防数据打架?数据仓库如何保持指标数据一致性开发指南(持续更新)

大数据开发人员最经常遇到尴尬和麻烦的事是,指标开发好了,以为万事大吉了。被业务和运营发现这个指标在不同地方数据打架,显示不同的数值。为了保证指标数据一致性,要从整个开发流程做好。

目录

一、数据仓库架构规划

二、数据抽取与转换

三、数据存储管理

四、指标管理与开发

五、元数据管理

六、数据质量管理

七、团队协作与沟通


一、数据仓库架构规划

  1. 分层架构设计
    • ODS(操作数据存储)层
      • 这是数据进入数据仓库的第一层,主要用于存储从各个数据源抽取过来的原始数据,几乎不做任何处理,保持数据的原貌。例如,从业务数据库(如 MySQL、Oracle 等)中通过 ETL 工具(如 Sqoop)抽取数据,以表的形式存储在 HDFS 或其他存储系统中。以电商业务为例,ODS 层会存储订单表、用户表、商品表等原始数据。
      • 这样做的目的是为后续的数据处理提供统一的数据源,避免不同开发人员直接从多个复杂的业务数据源获取数据,从而减少数据不一致的风险。因为所有的数据都从这个集中的原始数据层获取,只要保证抽取过程的准确性,就为后续的数据一致性奠定了基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值