国产之光-海豚调度器的入门知识篇

目录

概念和定义

核心特性

核心组件

工作流程

环境准备

系统软件方面

硬件方面

部署方式

单机模式

伪集群模式

集群模式

基本配置

工作流定义

调度管理

定时调度

手动调度

监控告警

任务类型扩展

资源管理

权限控制


概念和定义

Apache DolphinScheduler是一个 分布式、去中心化的可视化DAG工作流任务调度系统 ,专为企业级大数据处理场景设计。它采用 DAG (Directed Acyclic Graph) 结构组织任务,有效解决了复杂的数据任务依赖关系问题。DolphinScheduler的核心优势在于其 高可靠性和可扩展性 ,支持多租户和在线资源管理,能够稳定处理每日高达10万次的数据任务。

该系统广泛应用于 数据研发ETL流程 中,特别擅长处理复杂的任务依赖关系,同时提供全面的任务监控和管理功能,如重试、恢复、暂停和终止等操作。DolphinScheduler的这些特性使其成为大数据处理领域的重要工具,尤其适合需要频繁协调大量异构任务的企业环境。

核心特性

Apache DolphinScheduler作为一个强大的大数据任务调度系统,拥有多个关键特性,使其能够在复杂的企业环境中脱颖而出。这些特性不仅体现了系统的灵活性和适应性,还展示了其在大规模数据处理方面的卓越表现:

  1. 高可靠性
    Do

<think>好的,用户现在想了解海豚调度的使用方法或教程,之前我已经给过一个使用指南,现在需要结合提供的引用内容来优化回答。首先,我需要查看用户提供的引用内容,看看有没有新的信息需要补充到教程里。 引用[1]提到了安装时的配置参数,比如yarn单点部署的设置,以及安装脚本和Web UI访问。这可以补充到安装与部署部分,特别是集群配置的细节。之前的指南提到单机启动,但用户可能需要更多集群部署的信息,比如修改yarnHaIps和singleYarnIp参数,然后运行install.sh脚本。这部分需要详细说明,可能还要分步骤,比如备份配置文件、修改参数等。 引用[2]讨论了Python任务的环境配置,特别是虚拟环境的指定和资源文件的调用,强调需要__init__.py文件。这应该在核心概念或任务配置示例部分加强说明,比如如何在Python任务中正确引用资源文件,确保用户知道添加初始化文件的重要性。 引用[3]提到使用编程语言结合HTTP库编写自动化脚本,调用API进行任务管理。这部分可以作为高级用法,补充到运维与监控或者任务配置中,说明如何通过API实现自动化操作,比如定期触发工作流或处理错误响应。 引用[4]涉及环境变量配置dolphinscheduler_env.sh,影响Shell、Python等任务的环境。这需要添加到环境配置部分,指导用户如何设置全局环境变量,特别是针对不同任务类型的配置。 用户之前的问题是关于海豚调度的使用教程,现在可能需要更详细的步骤,尤其是安装配置和任务设置。需要确保回答结构清晰,分步骤讲解安装、核心概念、任务配置、运维监控,并引用相关引用内容来支持说明。同时,要检查是否涵盖了用户可能遇到的常见问题,如数据库连接失败、资源文件调用、集群模式配置等,这些已经在相关问题中提到,可能在回答中适当提及或链接。 另外,用户提供的引用中有关于API调用的自动化脚本,这可能是一个高级功能,适合在教程中单独分出一个部分,或者作为扩展内容。需要判断用户的需求层次,如果是初学者,可能更关注基础使用;如果是进阶用户,可能需要API和自动化的信息。根据用户提问的“使用方法或教程”,基础内容应优先,但可以提及高级功能作为扩展。 最后,确保所有引用都正确标注,例如在修改配置文件时引用[1],在Python任务配置时引用[2]和[4],在API自动化时引用[3]。同时,相关问题部分需要更新,结合新的引用内容生成更具体的问题,比如如何通过API自动化管理任务,如何配置环境变量等。 总结需要补充的内容点: 1. 安装步骤中补充集群配置参数和安装脚本细节。 2. 加强Python任务中环境变量和资源文件的说明,强调__init__.py。 3. 添加API自动化脚本的使用方法。 4. 环境变量配置文件的设置指导。 5. 更新相关问题,涵盖新补充的内容点。</think>### 海豚调度(DolphinScheduler)使用教程详解 #### 一、安装与部署(单机/集群模式) 1. **环境配置** - 修改集群配置文件(如 YARN 单点模式): 在 `install.sh` 前编辑参数,例如设置 `yarnHaIps=""` 和 `singleYarnIp="hadoop103"`[^1]。 ```bash # 示例配置(YARN 单点) yarnHaIps="" singleYarnIp="hadoop103" ``` - 执行安装脚本并启动服务: ```bash sh /opt/module/apache-dolphinscheduler-1.3.9-bin/install.sh ./bin/dolphinscheduler-daemon.sh start standalone-server # 单机模式 ``` - 访问 Web UI:浏览器输入 `http://<服务器IP>:12345/dolphinscheduler`[^1]。 2. **环境变量设置** 通过 `dolphinscheduler_env.sh` 配置全局环境变量,影响 Shell、Python、Flink 等任务: ```bash vi conf/dolphinscheduler_env.sh # 添加如 PYTHON_HOME=/opt/python3.8 等路径[^4] ``` --- #### 二、核心功能与任务配置 1. **工作流定义** - **任务类型**:支持 Shell、Python、Flink、Spark 等。 - **Python 任务配置**: - **虚拟环境**:指定 Python 解释器路径(如 `/opt/venv/bin/python3`)[^2]。 - **资源调用**:上传脚本至资源中心,并在任务中引用(需确保目录包含 `__init__.py` 文件)[^2]。 ```python # 示例:通过 ${变量名} 接收参数 print("输入参数:", ${input_param}) ``` 2. **依赖管理与参数传递** - **依赖关系**:通过可视化界面拖拽任务节点,设置执行顺序[^2]。 - **自定义参数**:支持局部参数替换脚本中的 `${变量}` 占位符[^2]。 --- #### 三、高级功能与自动化 1. **API 自动化操作** 使用 Python 的 `requests` 库调用海豚调度 API,实现工作流触发、状态监控: ```python import requests # 示例:启动工作流 response = requests.post( "http://ds-server:12345/dolphinscheduler/projects/{project}/executors/start-process-instance", json={"processDefinitionId": 123, "failureStrategy": "CONTINUE"}, headers={"token": "your_api_token"} ) if response.status_code == 200: print("工作流已触发") else: print("错误:", response.json()["msg"]) # 处理错误响应[^3] ``` 2. **高可用集群配置** 修改 `dolphinscheduler.properties` 中的 `apiServers` 参数,设置多节点: ```properties apiServers="ds1,ds2" # 多个节点以逗号分隔[^4] ``` --- #### 四、运维与监控 1. **日志排查** - Web 界面直接查看任务日志,定位执行错误。 - 若数据库连接失败,检查 `dolphinscheduler.properties` 中的 JDBC 配置(URL、用户名、密码)[^1]。 2. **告警集成** 配置邮件或钉钉告警,设置任务失败重试策略。 --- ### 官方资源 - **文档地址**:https://dolphinscheduler.apache.org/ 包含安装教程、API 接口、最佳实践及版本更新说明[^1][^4]。 --- ### 相关问题 1. 如何通过 API 实现海豚调度工作流的定时触发?[^3] 2. 在 Python 任务中如何避免因缺少 `__init__.py` 导致的模块导入错误?[^2] 3. 如何为海豚调度配置多节点的 ZooKeeper 高可用集群?[^1] 4. 环境变量 `dolphinscheduler_env.sh` 对 Spark 任务有何影响?[^4] 通过上述步骤和示例,您可以快速掌握海豚调度的基础操作和高级功能,满足从简单任务调度到复杂工作流管理的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值