决策树中的算法有哪些?C4.5 和 CART 的区别是什么?决策树原理是什么?决策树一般用于解决什么问题?
决策树中有 ID3 算法、C4.5 算法、CART 算法等。
C4.5 和 CART 有以下区别。C4.5 是基于信息增益比来选择特征进行划分,它能够处理离散型和连续型的属性。在构建决策树过程中,C4.5 会对连续型属性进行离散化处理。而 CART(分类与回归树)既可以用于分类问题也可以用于回归问题。在分类时,CART 使用基尼系数来选择特征划分节点;在回归时,它使用平方误差最小化原则。C4.5 生成的是多叉树,CART 生成的是二叉树。
决策树的原理是基于树结构进行决策。它从根节点开始,通过对数据集中的特征进行评估,选择一个最优的特征作为节点进行划分。比如有一个判断水果是苹果还是橙子的决策树,可能首先根据颜色这个特征进行划分,如果颜色是红色,可能进一步根据形状来划分。在划分过程中,根据某种评估标准(如信息增益、信息增益比或基尼系数)来确定哪个特征是最优的划分特征。这个过程不断重复,直到满足某个停止条件&#