商汤科技大数据面试题及参考答案

Spark 的 join 操作和 reduceByKey 操作是否一定有 Shuffle?

在 Spark 中,join操作和reduceByKey操作通常会涉及到 Shuffle,但不是一定的。

对于join操作:

  • 当进行join时,如果参与join的两个 RDD 的分区方式与join条件不匹配,就需要通过 Shuffle 来重新分区,以确保具有相同join键的记录能够被分配到同一个分区中进行join操作。例如,两个 RDD 按照不同的键进行了分区,而现在要基于另一个不同的键进行join,那么就必然会发生 Shuffle。
  • 然而,如果两个 RDD 已经按照join键进行了相同的分区(比如都使用了 HashPartitioner 且分区数相同,并且按照join键进行了分区),那么可以直接在本地进行join,而不需要 Shuffle,这种情况被称为Broadcast Hash JoinCo - locate Join,前提是其中一个 RDD 足够小ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值