2021.03.20【NOIP提高B组】模拟 总结

2021.03.20【NOIP提高B组】模拟 总结

第一题:设 m m m为原题中的 k k k。考虑区间 d p dp dp,设 f i , j , k f_{i,j,k} fi,j,k表示消除区间 [ i , j ] [i,j] [i,j]及前面 k k k个与 i i i相同的点得最小代价。

k = m − 1 k=m-1 k=m1,直接就是 f i , j , k = f i + 1 , j , 0 f_{i,j,k}=f_{i+1,j,0} fi,j,k=fi+1,j,0

否则, f i , j , k = f i , j , min ⁡ { k + 1 , m − 1 } + 1 f_{i,j,k}=f_{i,j,\min\{k+1,m-1\}}+1 fi,j,k=fi,j,min{k+1,m1}+1

注意当 a i = a i + 1 a_i=a_{i+1} ai=ai+1时, f i , j , k = f i + 1 , j , min ⁡ { k + 1 , m − 1 } f_{i,j,k}=f_{i+1,j,\min\{k+1,m-1\}} fi,j,k=fi+1,j,min{k+1,m1}

然后还有一种转移就是枚举一个中间点 l l l,使得 l l l的颜色与 i i i的颜色相同,然后分成两部分转移: f i , j , k = f i + 1 , l , 0 + f l + 1 , j , min ⁡ { k + 1 , m − 1 } f_{i,j,k}=f_{i+1,l,0}+f_{l+1,j,\min\{k+1,m-1\}} fi,j,k=fi+1,l,0+fl+1,j,min{k+1,m1}

#include<bits/stdc++.h>
using namespace std;
int cnt,n,m,a[105],f[105][105][105];
const int inf=1000000000;
int main(){
	cin>>n>>m;
	for (int i=1;i<=n;i++) cin>>a[i];
	for (int i=1;i<=n;i++){
		for (int j=0;j<=m-1;j++){
			f[i][i][j]=m-j-1;
		}
	}
	for (int len=2;len<=n;len++){
		for (int l=1;l<=n-len+1;l++){
			int r=l+len-1;
			for (int i=m-1;i>=0;i--){
				if (i==m-1){
					f[l][r][i]=f[l+1][r][0];
				}
				else{
					f[l][r][i]=f[l][r][min(i+1,m-1)]+1;
				}
				if (a[l]==a[l+1]){
					f[l][r][i]=min(f[l][r][i],f[l+1][r][min(i+1,m-1)]);
				}
				for (int j=l+1;j<r;j++){
					if (a[j+1]==a[l]){
						f[l][r][i]=min(f[l][r][i],f[l+1][j][0]+f[j+1][r][min(i+1,m-1)]);
					}
				}
			}
		}
	}
	cout<<f[1][n][0];
}

第二题:区间动态规划模板,直接设 f i , j f_{i,j} fi,j表示 [ i , j ] [i,j] [i,j]的最小代价,枚举中间点转移即可。

#include<bits/stdc++.h>
using namespace std;
int n,a[505],b[505],f[505][505],ans;
const int inf=1000000000;
int main(){
	cin>>n;for (int i=1;i<=n;i++) cin>>a[i]>>b[i];
	for (int i=1;i<=n;i++)	
		for (int j=1;j<=n;j++)
			if (i!=j)
				f[i][j]=inf;
	for (int len=2;len<=n;len++){
		for (int l=1;l<=n-len+1;l++){
			int r=l+len-1;
			for (int i=l;i<r;i++){
				f[l][r]=min(f[l][r],f[l][i]+f[i+1][r]+a[l]*b[i]*b[r]);
			}
		}
	}
	cout<<f[1][n];
}

第三题:区间动态规划模板,直接设 f i , j f_{i,j} fi,j表示 [ i , j ] [i,j] [i,j]的最小代价,其中 f i − 1 , i + 1 = a i × a i − 1 × a i + 1 f_{i-1,i+1}=a_i\times a_{i-1}\times a_{i+1} fi1,i+1=ai×ai1×ai+1,然后枚举中间点转移即可。

#include<bits/stdc++.h>
using namespace std;
int f[205][205],g[205][205],n,a[205],ans1,ans2;
const int inf=10000000;
int main(){
	cin>>n;
	for (int i=1;i<=2*n;i++)
		for (int j=1;j<=2*n;j++)
			if (i<j)
				f[i][j]=-inf,g[i][j]=inf;
	ans1=-inf;
	ans2=inf;
	for (int i=1;i<=n;i++) cin>>a[i],a[i+n]=a[i];
	a[0]=a[n];
	a[2*n+1]=a[1];
	for (int i=1;i<=2*n;i++) f[i][i]=g[i][i]=0,f[i][i+1]=g[i][i+1]=0,f[i-1][i+1]=g[i-1][i+1]=a[i]*a[i-1]*a[i+1];
	for (int len=3;len<=n;len++){
		for (int l=1;l<=n*2-len+1;l++){
			int r=l+len-1;
			for (int i=l+1;i<=r-1;i++){
				f[l][r]=max(f[l][r],f[l][i]+f[i][r]+a[i]*a[l]*a[r]);
				g[l][r]=min(g[l][r],g[l][i]+g[i][r]+a[i]*a[l]*a[r]);
			}
		}
	}
	for (int i=1;i<=n;i++){
		ans1=max(ans1,f[i][i+n-1]);
		ans2=min(ans2,g[i][i+n-1]);
	}
	cout<<ans1-ans2;
}

第四题:设 f i , j , 0 / 1 f_{i,j,0/1} fi,j,0/1表示在起点的左边走了多少,右边走了多少,在左边还是右边。转移的话只要看剩下的是什么用一个区间最大值维护一下就行了。

#include<bits/stdc++.h>
using namespace std;
int n,k,a[2005],f[2005][2005][2],g[4005][4005],ans;
const int inf=1000000000;
int main(){
	cin>>n>>k;for (int i=1;i<=n;i++) cin>>a[i];
	for (int i=1;i<=n;i++){
		g[i][i]=a[i];
		for (int j=i+1;j<=n;j++){
			g[i][j]=max(g[i][j-1],a[j]);
		}
	}
	for (int i=0;i<=n;i++){
		for (int j=(i==0?1:0);j<=n-i;j++){
			if (j>0)f[i][j][1]=min(f[i][j-1][1]+g[i+k+2][n-j-k+1],f[i][j-1][0]+g[i+k+2][n-j-k+1]*(i+j));
			else f[i][j][1]=inf;
			if (i>0)f[i][j][0]=min(f[i-1][j][0]+g[i+k+1][n-j-k],f[i-1][j][1]+g[i+k+1][n-j-k]*(i+j));
			else f[i][j][0]=inf;
		}
	}
	ans=inf;
	for (int i=0;i<=n;i++) ans=min(ans,min(f[i][n-i][0],f[i][n-i][1]));
	for (int i=1;i<=n;i++) ans+=a[i];
	cout<<ans;
}

这次比赛主要考察区间动态规划,要熟悉掌握这个类型的算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值